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We investigate iterative methods for solving linear systems arising from the kinetic theory
of gases and providing multicomponent transport coefficients of partially ionized plasmas.
We consider the situations of weak and strong magnetic fields as well as electron temper-
ature nonequilibrium and the linear systems are investigated in their natural constrained
singular symmetric form. Stationary iterative techniques are considered with new more
singular formulations of the transport linear systems as well as orthogonal residuals algo-
rithms. The new formulations are derived by considering generalized inverses with null-
spaces of increasing dimension. Numerical tests are performed with high temperature
air and iterative techniques lead to fast and accurate evaluation of the transport coeffi-
cients for all ionization levels and magnetic field intensities.

� 2010 Elsevier Inc. All rights reserved.
1. Introduction

Ionized magnetized reactive gas mixtures have many practical applications such as laboratory plasmas, high-speed gas
flows, lean flame stabilization or atmospheric phenomena [6,10,13,17,18,32,36,67]. This motivates kinetic theory investiga-
tions and the derivation of macroscopic multicomponent plasmas equations. Applications of the Chapman–Enskog theory to
partially ionized mixtures in weak and strong magnetic fields in a regime where there is only one temperature have been
discussed in particular by Braginsky [6], Bruno, Capitelli and Dangola [8], Chapman and Cowling [13], Devoto [22], Ferziger
and Kaper [32], Kaneko [50], for monatomic species, and Giovangigli and Graille [41,43] for polyatomic species. Mixtures of
monatomic gases at thermodynamic nonequilibrium with multitemperature transport arising from electron/ions mass ratio
asymptotics have been notably investigated by Braginsky [6,7], Chmieleski and Ferziger [16], Daybelge [19], Petit and Dar-
rozes [66], Degond and Lucquin [20,21], Magin and Degrez [56], and a comprehensive multiscale kinetic theory has been pre-
sented by Graille, Magin and Massot [47]. Transport properties in multicomponent plasmas have also been investigated with
Grad’s method by Zhdanov [72].

The conservation equations for partially ionized plasmas derived in these various regimes involve transport fluxes, that is,
diffusive mass fluxes, viscous tensors or heat fluxes. These transport fluxes, on the other hand, are expressed in terms of
transport coefficients and macroscopic variable gradients. Detailed modeling of multicomponent plasmas thus requires
the evaluation of transport coefficients which are functions of the state variables p; T , and y1; . . . ; yn and the intensity of
the magnetic field B.

Evaluation of the transport coefficients, however, requires solving linear systems associated with linearized Boltzmann
equations [8,9,13,32,41,43,45,47,55,60,70,72]. The corresponding transport linear systems can be obtained in their natural
constrained singular symmetric form for all the regimes considered [13,32,41,43,47,70]. The systems associated with vector
transport relations may also take various forms [23,35,52,58,59,64,73]. Since the size of the linear systems can be relatively
large and since transport properties have to be evaluated at each computational cell in space and time, the use of direct
. All rights reserved.
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numerical inversions may become computationally expensive and iterative techniques constitute an interesting and appeal-
ing alternative [64,65].

A systematic development of a mathematical and numerical theory of iterative algorithms for evaluating transport coef-
ficients of nonionized polyatomic gas mixtures has been given by Ern and Giovangigli [23,25,28,38]. Various algorithms have
been shown to be convergent by using the properties of linearized Boltzmann collision operators, the structure of usual var-
iational approximation spaces associated with species perturbed distribution functions, and the theory of iterative methods
for constrained singular symmetric linear systems [23,28,38]. The resulting algorithms have been found to be efficient espe-
cially for numerical simulation of reactive flows with complex chemistry [23,25,27–29].

Extensions of these techniques to partially ionized mixtures have been investigated by Giovangigli and Graille [41,43,44]
in weak and strong magnetic fields and García Muñoz [36] for nonequilibrium planetary atmospheres. The linear systems in
strong magnetic fields are then complex with an imaginary part proportional to the intensity of the magnetic field. General-
ized conjugate gradient techniques as well as stationary iterative methods have been discussed [36,41,43,44]. The numerical
experiments performed by García Muñoz [36] on multicomponent diffusion matrices in planetary atmospheres have shown
in particular that the convergence rates of stationary iterative methods deteriorate as ionization levels increase and these
methods become prohibitively slow. Similar results have been reported by Giovangigli and Graille who investigated trans-
port coefficients in magnetized plasmas [43]. The purpose of this paper is now to derive new transport algorithms which
converge rapidly for all ionization levels and magnetic field intensities and to perform comprehensive numerical tests with
high temperature air to assess the accuracy of the resulting approximate coefficients.

We first review the transport fluxes and the mathematical structure of the transport linear systems in various regimes.
We consider the situations of weak and strong magnetic fields as well as that of electron temperature nonequilibrium. We
subsequently discuss stationary iterative methods, generalized conjugate gradient techniques, and perform numerical tests
with high temperature air.

For stationary methods, we express the solution of transport linear systems in terms of generalized inverses with pre-
scribed range and nullspace [2,4,23,28,37,38,44] and present convergence results for constrained singular symmetric sys-
tems [4,28,38,44,51,54,57,61]. We next introduce the more singular formulations of the transport linear systems by
considering generalized inverses with nullspaces of increasing dimension. These new formulations can be associated with
expansions of symmetric generalized inverses into dyadic products of conjugate directions. These more singular formula-
tions are then used to define new stationary algorithms. The main idea is that the more singular formulations will yield pro-
jected iterative algorithms with better convergence rates [40]. We next investigate generalized conjugate gradient
techniques such as orthogonal residuals algorithms [28,30,31,33,34,44,46,49,54] and discuss the link between the more sin-
gular formulations and search directions.

Numerical experiments are performed with high temperature air for varying ionization levels and magnetic field inten-
sities. The air mixture is constituted by the eleven species N2, O2, NO, N, O, Nþ2 ;O

þ
2 , NO+, N+, O+, and e. Numerical tests are first

conducted for stationary iterative techniques in order to evaluate first order and higher order multicomponent diffusion
matrices in isotropic and magnetized flows. The numerical experiments confirm the fast convergence rates of the new sta-
tionary algorithms for all ionization levels and magnetic field intensities. In particular, accurate low cost approximations are
obtained for multicomponent diffusion matrices. Numerical tests are then performed with generalized conjugate gradients
algorithms in order to evaluate thermal conductivities and species diffusion velocities. The numerical tests confirm the good
convergence rates of generalized conjugate gradient techniques in partially ionized mixtures. These numerical tests with
high temperature air finally establish that iterative techniques lead to low cost accurate evaluations of multicomponent
transport coefficients for all ionization levels and magnetic field intensities.

The transport linear systems and their mathematical structure is investigated in Sections 2 and 3 for isotropic and aniso-
tropic mixtures, respectively, and in Section 4 for thermodynamic nonequilibrium. Stationary iterative algorithms are inves-
tigated in Section 5 and generalized conjugate gradient algorithms in Section 6. Applications to diffusion matrices are
presented in Section 7 and applications to thermal conductivities and Stefan–Maxwell equations in Section 8.

2. Transport linear systems in isotropic mixtures

We summarize in this section the transport fluxes and transport linear systems of polyatomic reactive gas mixtures at
thermodynamic equilibrium in weak magnetic fields [13,23,32,41,70].

2.1. Transport fluxes

The transport fluxes derived from the kinetic theory of gases can be written in the form [13,32,39,70]
P ¼ �jð$ � vÞI � g $v þ ð$vÞt � 2
3
gð$ � vÞI

� �
; ð2:1Þ

vi ¼ �
X
j2S

Dijdj � hi$ log T; i 2 S; ð2:2Þ

q ¼ �bk$T � p
X
i2S

hidi þ
X
i2S

qhiyivi; ð2:3Þ
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where P denotes the viscous tensor, $ ¼ ð@x; @y; @zÞt the usual differential operator, I the unit tensor in three dimensions, j
the volume viscosity, g the shear viscosity, v the mass averaged flow velocity, vi; i 2 S, the species diffusion velocities,
Dij; i; j 2 S, the multicomponent diffusion coefficients, di; i 2 S, the species diffusion driving forces, hi; i 2 S, the species ther-
mal diffusion coefficients, T the absolute temperature, S ¼ f1; . . . ;nsg the species indexing set, ns the number of species, q the
heat flux vector, bk the partial thermal conductivity, p the pressure, q the density, hi; i 2 S, the species enthalpy per unit mass,
and yi; i 2 S, the species mass fractions. Note incidentally that the ratio j=g is not small for polyatomic gases as taken for
granted in most books on fluid dynamics and its impact is investigated in [5]. The vectors di; i 2 S, incorporate the effects
of various state variable gradients and external forces and are given by
di ¼
$pi

p
� niqi

p
ðE þ v ^ BÞ; i 2 S; ð2:4Þ
where pi; i 2 S, denotes the species partial pressures, ni; i 2 S, the species molar densities, qi; i 2 S, the species molar charges,
E the electric field, and B the magnetic field. Alternatively, the diffusion velocities and the heat flux vector may be written in
terms of the species thermal diffusion ratios vi; i 2 S, and the thermal conductivity k [70]
vi ¼ �
X
j2S

Dijðdj þ vj$ log TÞ; i 2 S; ð2:5Þ

q ¼ �k$T þ p
X
i2S

vivi þ
X
i2S

qhiyivi; ð2:6Þ
or in terms of the constrained diffusion driving forces edi ¼ di � yi

P
l2Sdl; i 2 S. The corresponding governing equations

expressing the conservation of species mass, momentum and energy are omitted for brevity and we refer to [13,32,39,70]
for more details.

2.2. Transport linear systems

The transport linear systems obtained from the kinetic theory take on either the nonsingular form
Ga ¼ b; ð2:7Þ
or else the constrained singular form
Ga ¼ b;

ha; gi ¼ 0;

�
ð2:8Þ
where G denotes the system matrix, b the right-hand side, g the constraint vector and h; i the Euclidean scalar product
[13,23,32,70]. Both systems are typically associated with the evaluation of a transport coefficient l ¼ ha; b0i where b0 is a gi-
ven vector.

The transport linear systems are derived from a variational procedure used to solve constrained systems of linearized
Boltzmann integral equations. For each transport coefficient, various transport linear systems can be considered, correspond-
ing to different choices of the variational approximation space. The standard choices as well as some reduced transport linear
systems are presented in Table 1. In this table, the first column contains the system Ga ¼ b; the second, the size of the system
n where ns denotes the number of species and np the number of polyatomic species; the third, the constraint ha; gi ¼ 0; and
the last, the expression of the associated transport coefficient l. The transport coefficients corresponding to the largest var-
iational space have been denoted by l, and the ones associated with a reduced variational space have been denoted by l½x�,
where x stands for a simple symbol associated with the reduced variational space. The explicit expressions for all of the sys-
tem matrices, right-hand sides, and constraint vectors can be found in Ern and Giovangigli [23].

For nonionized mixtures the reduced systems yield approximations for the transport coefficients which are generally
within a few percent accuracy of the transport coefficients obtained with the standard systems [23,25]. The accuracy of
the corresponding coefficients deteriorates for ionized mixtures since the convergence of the Chapman–Enskog expansion
is known to be slower [6,10,13,32]. An extreme situation is that of electrical conductivities which require higher order dif-
fusion coefficients to compensate for the cancellation of significative digits [6,32,43].

2.3. Mathematical structure

For x; y 2 Rn the scalar product is given by hx; yi ¼
P

16k6nxkyk where x ¼ ðx1; . . . ; xnÞt ; y ¼ ðy1; . . . ; ynÞ
t , and we denote

x? ¼ fy 2 Rn; hx; yi ¼ 0g. We denote by Rn;n the set of square matrices of size n, and for G 2 Rn;n, we write Gt the transpose
of G;NðGÞ the nullspace of G, and RðGÞ the range of G. We denote I the unit tensor in Rn;n and for x; y 2 Rn, the tensor product
matrix x� y is given by x� y ¼ ðxkylÞ16k;l6n.

The sparse transport matrix dbðGÞ is a submatrix formed by diagonals of blocks of G [23]. It can be used as a splitting ma-
trix for stationary methods as well as a preconditioner for generalized conjugate gradients algorithms [23,25]. The definition
of the matrix dbðGÞ is reminded in Appendix A. The matrices G and dbðGÞ have a general structure inherited from the prop-
erties of Boltzmann linearized collision operators and the properties of usual variational approximation spaces associated



Table 1
Typical transport linear systems for isotropic gases.

System Size Constraint Evaluation

Hag ¼ bg ns – g ¼ hag; bgi
Kaj ¼ bj ns þ np haj; ki ¼ 0 j ¼ haj ; bji
K ½01�aj

½01� ¼ bj
½01� np – j½01� ¼ haj

½01�; b
j
½01�i

LaDk ¼ bDk 2ns þ np haDk ;Yi ¼ 0 Dkl ¼ haDk ; bDl i
L½e�a

Dk
½e� ¼ bDk

½e�
2ns haDk

½e� ;Y ½e�i ¼ 0 D½e�kl ¼ haDk
½e� ; b

Dl
½e�i

DaDk
½00� ¼ bDk

½00�
ns haDk

½00�; yi ¼ 0 D½00�kl ¼ haDk
½00�; b

Dl
½00�i

La
bk ¼ b

bk 2ns þ np
habk ;Yi ¼ 0 bk ¼ ðp=TÞhabk ; bbk i

hk ¼ �ha
bk ; bDk i

Kak ¼ bk ns þ np – k ¼ ðp=TÞhak; bki
v ¼ L00kak

L½e�a
bk
½e� ¼ b

bk
½e�

2ns
habk½e�;Y ½e�i ¼ 0 bk½e� ¼ ðp=TÞhabk½e�; bbk½e�i

h½e�k ¼ �ha
bk
½e�; b

Dk
½e� i

K½e�ak
½e� ¼ bk

½e�
ns – k½e� ¼ ðp=TÞhak

½e�; b
k
½e�i

v½e� ¼ L00k
½e� ak

½e�
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with the transport linear systems [23,26]. In order to simplify the presentation, we frequently assume in this paper that the
number of species is ns P 3. For the nonsingular systems, one can establish that

(G1)The matrices G;2dbðGÞ � G, and dbðGÞ are symmetric positive definite for ns P 1.
On the other hand, for the singular systems, one can establish that
(G2) The matrix G is symmetric positive semi-definite and its nullspace is NðGÞ ¼ Rz. The nullspace vector z, the constraint vec-
tor g and the right member b are such that hz; gi > 0 and hz; bi ¼ 0. The matrices 2dbðGÞ � G and dbðGÞ are symmetric positive
definite for ns P 3.

These properties imply that the transport linear systems are well posed [23,28]. Their solution is also conveniently ex-
pressed in terms of symmetric generalized inverses [23,28] as further discussed in Section 5. The singular systems can also
be recast into the nonsingular form a ¼ Gþ ag� gð Þ�1b where a > 0 and the matrix Gþ ag� g is symmetric positive definite
[23,37,38].

3. Transport linear systems in nonisotropic mixtures

We summarize in this section the transport fluxes and transport linear systems for polyatomic reactive gas mixtures at
thermodynamic equilibrium in strong magnetic fields [6,13,32,41,43].

3.1. Transport fluxes

In the presence of strong magnetic fields, the transport fluxes are not anymore isotropic [6,13,32,41,43]. Denoting by B
the magnetic field, B ¼ kBk the magnetic field intensity, and B ¼ B=B the unitary vector, we introduce for any three dimen-
sional vector x the associated vectors
xk ¼ ðx �BÞB; x? ¼ x� xk; x� ¼ B ^ x:
The vectors xk;x? and x� are mutually orthogonal and obtained from x by applying the linear operators B�B; I �B�B

and RðBÞ where RðBÞ is the rotation matrix such that RðBÞx ¼ B ^ x. In strong magnetic fields, the viscous tensor P is found
in the form
P ¼ �jð$ � vÞ I� g1S� g2 RðBÞS� SRðBÞð Þ � g3 hSB;BiB�B� RðBÞSRðBÞð Þ
� g4 SB�BþB�BS� 2hSB;BiB�Bð Þ � g5 B�BSRðBÞ � RðBÞSB�Bð Þ; ð3:1Þ
where S ¼ $v þ $v t � 2
3 ð$ � vÞ I denotes the strain rate tensor, j the volume viscosity, and gj;1 6 j 6 5, the shear viscosities.

The species diffusion velocities vi; i 2 S, are found in the form
vi ¼ �
X
j2S

Dkijd
k
j þ D?ij d?j þ D�ij d�j

� �
� hki ð$ log TÞk � h?i ð$ log TÞ? � h�i ð$ log TÞ�; ð3:2Þ
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where Dkij;D
?
ij , and D�ij ; i; j 2 S, are the species diffusion coefficients parallel, perpendicular and transverse to the magnetic

field, and hki ; h
?
i ; h

�
i ; i 2 S, the species thermal diffusion coefficients parallel, perpendicular and transverse to the magnetic

field. The heat flux q can be written similarly in the form
Table 2
Typical

Syste

Hag1

ðH þ
ðH þ
ðLþ

ðDþ

ðLþ

ðKþ

ðK½e�
q ¼ �bkkð$TÞk � bk?ð$TÞ? � bk�ð$TÞ� � p
X
i2S

hki dki þ h?i d?i þ h�i d�i
� �

þ
X
i2S

qyihivi; ð3:3Þ
where bkk; bk?, and bk� are the partial thermal conductivities parallel, perpendicular and transverse to the magnetic field.
The species diffusion velocities and the heat flux can also be rewritten in terms of the thermal diffusion ratios vki ;v?i , and

v�i ; i 2 S, and the thermal conductivities kk; k?, and k� [41,43]
vi ¼ �
X
j2S

Dkij dkj þ vkj ð$ log TÞk
� �

�
X
j2S

D?ij d?j þ v?j ð$ log TÞ? þ v�j ð$ log TÞ�
� �

�
X
j2S

D�ij d�j þ v?j ð$ log TÞ� � v�j ð$ log TÞ?
� �

; ð3:4Þ

q ¼ �kkð$TÞk � k?ð$TÞ? � k�ð$TÞ� þ p
X
i2S
ðvki v

k
i þ v?i v?i þ v�i v�i Þ þ

X
i2S

qiyihivi: ð3:5Þ
The corresponding governing equations expressing the conservation of species mass, momentum and energy are omitted
for brevity and we refer to [13,32,41] for more details.

3.2. Transport linear systems

The transport linear systems associated with the transport coefficients parallel to the magnetic field are real and identical
to that of isotropic mixtures already investigated in Section 2. These system are not further considered in this section. On the
other hand, the transport linear systems associated with anisotropic coefficients are complex, vector products with the mag-
netic field having been replaced by multiplications with imaginary numbers [32,41]. The transport linear systems obtained
from the kinetic theory take on either the regular form
ðGþ iG0Þa ¼ b; ð3:6Þ
or else the constrained singular form
ðGþ iG0Þa ¼ b;

ha; gi ¼ 0;

(
ð3:7Þ
where i2 ¼ �1;G;G0 2 Rn;n denotes the system matrices, b 2 Rn the right-hand side, g 2 Rn the constraint vector, and h; i the
Hermitian scalar product. The real part G is the matrix already obtained for isotropic mixtures whereas the imaginary part G0

is proportional to the intensity of the magnetic field. Both systems are typically associated with the evaluation of the trans-
port coefficient l? þ il� ¼ ha; b0i, where b0 2 Rn is a given vector.

The transport linear systems corresponding to the first usual Sonine/Wang-Chang Uhlenbeck polynomial expansions are
presented in Table 2. The explicit expressions of the systems coefficients are detailed in references [23,43]. The successive
approximations in the Chapman–Enskog expansion of transport coefficients are still known to converge more slowly in plas-
mas than in neutral mixtures [6,8,10]. Note that the variational framework for a direct evaluation of the thermal conductivity
and the thermal diffusion ratios [24,23] has been generalized to the anisotropic case [44].
transport linear systems for nonisotropic gases.

ms Size Constraint Coefficients

¼ bg ns – g1 þ ig2 ¼ 1
2 hag1 þ ag2; bgi

2iH0Þag2 ¼ bg g1 þ g3 ¼ hag1; bgi
iH0Þag3 ¼ bg g4 þ ig5 þ g1 þ ig2 ¼ hag3; bgi

iL0ÞaDj ¼ bDj 2ns þ np haDj ;Yi ¼ 0 D?ij þ iD�ij ¼ haDj ; bDi i

iD0ÞaDj

½00� ¼ bDj

½00�
ns haDj

½00�; yi ¼ 0 D?½00�ij þ iD�½00�ij ¼ ha
Dj

½00�; b
Di
½00�i

iL0Þabk ¼ b
bk 2ns þ np

habk ;Yi ¼ 0 bk? þ ibk� ¼ ðp=TÞhabk ; bbk i
h?i þ ih�i ¼ �ha

bk ; bDi i
iK0Þak ¼ bk ns þ np – k? þ ik� ¼ ðp=TÞhak; bki

v? þ iv� ¼ L00kak

þ iK0½e�Þak
½e� ¼ bk

½e�
ns – k?½e� þ ik�½e� ¼ ðp=TÞhak

½e�; b
k
½e�i

v?½e� þ iv�½e� ¼ L00k
½e� ak

½e�
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3.3. Mathematical structure

For x; y 2 Cn the Hermitian scalar product is given by hx; yi ¼
P

16k6nxkyk where x ¼ ðx1; . . . ; xnÞt ; y ¼ ðy1; . . . ; ynÞ
t , and the

nondegenerate nondefinite bilinear symmetric form ðx; yÞ naturally associated with complex symmetric matrices is given by
ðx; yÞ ¼

P
16k6nxkyk. The real x and imaginary y parts x; y 2 R, of a complex number z 2 C; z ¼ xþ iy, are written x ¼ Rz and

y ¼ Iz. When A is a real linear subspace A � Rn, we denote by Aþ iA the corresponding complex linear space
fz 2 Cn; z ¼ xþ iy; x; y 2 Ag. If A is a real subspace, we denote by A? the orthogonal complement with respect to the Euclid-
ean product whereas when B is a complex subspace, we denote by B? the orthogonal complement with respect to the non-
degenerate bilinear form ð; Þ. Note that if B has a basis of real vectors, the orthogonal complement is equivalently defined
with the Hermitian scalar product. This is notably the case with the constraint ha; gi ¼ 0 which can also be written
ða; gÞ ¼ 0 since g is real. When a; b 2 Cn, the tensor product matrix a� b has components akbl;1 6 k; l 6 n and for any
x 2 Cn we have a� b x ¼ aðb; xÞ.

The following results have been obtained from the properties of Boltzmann linearized operators under general assump-
tions on the variational approximation spaces after properly structuring the complex transport linear systems [41]. For the
nonsingular systems, the matrix G satisfies ðG1Þ whereas the imaginary part is such that

ðG01Þ The matrix G0 is real diagonal.
On the other hand, for the singular systems, the matrix G satisfies ðG2Þ wheras the imaginary part is such that
ðG02Þ The matrix G0 is real and given by G0 ¼ QD0P where P and Q are the projector matrices Q ¼ Pt ¼ I � g� z=hz; gi and D0 is
diagonal.

It is easily deduced from ðG1ÞðG01Þ and ðG2ÞðG02Þ that NðGþ iG0Þ ¼ f0g in the regular case, NðGþ iG0Þ ¼ Cz in the singular
case, and that the transport linear systems are well posed [41,43,44]. Their solution may conveniently be expressed in terms
of symmetric generalized inverses as further discussed in Section 5. The singular systems can also be recast into the nonsin-
gular form a ¼ Gþ iG0 þ ag� g

� ��1
b where a > 0 and the matrix Gþ ag� g is symmetric positive definite [23,44].

4. Transport linear systems in a two-temperature plasma

We summarize in this section the transport fluxes and the transport linear systems in the situation of electron temper-
ature nonequilibrium. We only considered a two-temperature plasma and refer to Capitelli et al. [11,12], Nagnibeda and
Kustova [60], and Kustova [53] for more general desequilibriums as state-to-state models.

Two-temperature plasmas are relevant for many scientific and industrial application as for instance lean flame stabilization
by pulsed high voltage discharges [18]. The Knudsen number Kn and the square root of the mass ratio ðme=mhÞ1=2, where mh

denotes a typical heavy species mass, are usually of the same order of magnitude [16,20,21,47,56,66]. The corresponding Boltz-
mann equations then have a natural scaling already discussed by Petit and Darrozes [66], Degond and Lucquin [20,21], Magin
and Degrez [56], and Graille, Magin, and Massot [47]. The speciesS ¼ H [ fegmust be partitioned between the heavy speciesH
and the electrons e and Graille, Magin and Massot have established that the proper reference velocity is the heavy species veloc-
ity vh in order to deriveOðKnÞ accurate electron governing equations with the Kolesnikov effect [47]. The infinite mass approx-
imation with Dirac masses, previously used by several authors, may also be avoided in the Chapman–Enskog procedure and
entropy production has been shown to be nonnegative for the resulting multicomponent flow model [47].

4.1. Heavy species transport fluxes

In the limit of zero electron mass, there are no polarization effects for the heavy species and the corresponding transport
fluxes can be written [47]
Ph ¼ �jð$ � vhÞI� g $vh þ ð$vhÞt �
2
3
ð$ � vhÞI

� �
; ð4:1Þ

vi ¼ �
X
j2H

Dij
bdj � hi$ log Th; i 2 H; ð4:2Þ

qh ¼ �bkh$Th � ph

X
i2H

hhi
bdi þ

X
i2H

qhiyivi; ð4:3Þ
where Ph is the heavy species viscous tensor, vh the heavy species mass averaged flow velocity, vi; i 2 H, the heavy species
diffusion velocities, bdi; i 2 H, the heavy species effective diffusion driving forces, Th the heavy species temperature, H the set
of heavy species indices, qh the heavy species heat flux, hi; i 2 H, the heavy species enthalpy per unit mass, and yi; i 2 H, the
heavy species mass fractions. The vectors bdi incorporate the effects of various state variable gradients and forces and are gi-
ven by
bdi ¼
$pi

ph
� niqi

ph
ðE þ vh ^ BÞ � niF ie

ph
; i 2 H; ð4:4Þ
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where pi; i 2 H, denotes the heavy species partial pressures, ph the heavy species total pressure, qi; i 2 H, the heavy species
molar charges, and F ie; i 2 H, the average force of electrons acting on the ith heavy species. This force can be expanded in the
form
F ie ¼ �pe akiedke þ a?ied?e þ a�ied�e þ vkie$ log Tke þ v?ie$ log T?e þ v�ie$ log T�e
� �

; i 2 H; ð4:5Þ
where pe is the electron partial pressure, and akie;a
?
ie;a

�
ie;v

k
ie;v?ie and v�ie; i 2 H, are second order coupling coefficients [47]. In

particular, the influence of electron temperature and partial pressure on the heavy species is mediated through the force
terms F ie; i 2 H. The heavy species diffusion velocities and heat flux may also be written in terms of the heavy species ther-
mal diffusion ratios vi; i 2 H, and the heavy species thermal conductivity kh as for isotropic gas mixtures [47].

4.2. Electron transport fluxes

The electron transport fluxes present polarization effects in the presence of strong magnetic fields. The second order elec-
tron diffusion velocity is found in the form [47]
ve ¼ �Dkeedke � D?eed?e � D�eed�e � hkeð$ log TeÞk � h?e ð$ log TeÞ? � h�e ð$ log TeÞ� �
X
i2H

akied2k
i þ a?ied2?

i þ a�ied2�
i

� �
; ð4:6Þ
where Dkee;D
?
ee and D�ee are the electron diffusion coefficients parallel, perpendicular and transverse to the magnetic field, and

hke; h
?
e and h�e the electron thermal diffusion coefficients parallel, perpendicular and transverse to the magnetic field. In this

equation, the electron diffusion driving force de and the second order diffusion driving forces d2
i ; i 2 H, are given by
de ¼
$pe

pe
� neqe

pe
ðE þ vh ^ BÞ; d2

i ¼ �nivi; i 2 H: ð4:7Þ
Similarly, the electron heat flux can be decomposed in the form
qe ¼ �bkkeð$TeÞk � bk?e ð$TeÞ? � bk�e ð$TeÞ� � pe hkedke þ h?e d?e þ h�e d�e
� �

� pe

X
i2H

vkied2k
e þ v?ied2?

e þ v�ied2�
e

� �
þ qeheve;

ð4:8Þ
where bkke; bk?e and bk�e are the electron partial thermal conductivities parallel, perpendicular and transverse to the magnetic
field. In particular, the influence of heavy species temperature and partial pressures on the electron transport fluxes is med-
iated through the second order diffusion driving forces d2

i ; i 2 H. Similar expressions can also be written in terms of the ther-
mal diffusion ratios and the electron thermal conductivity but are omitted for the sake of brevity as well as the governing
equations [47].

4.3. Transport linear systems

The kinetic theory investigations of Graille, Magin and Massot [47] have shown that the transport linear systems associ-
ated with the heavy species are similar to that of isotropic mixtures investigated in Section 2 with the indexing set S re-
placed by H. In particular, these systems share the same mathematical structure already investigated in Section 2. On the
other hand, the small transport linear systems associated with electrons are similar to that of the nonisotropic mixtures ob-
tained in Section 3 without singularities [47].

Since we are interested in iterative solutions of the transport linear systems associated with a large number of species,
only the mathematical structure of the heavy species transport linear systems – associated with the main computational
costs – and similar to that presented in Section 2 is therefore relevant in the nonequilibrium case. We do not repeat the cor-
responding table of transport linear systems since they formally corresponds to changing the indexing set from S to H.

Investigating the corresponding linear systems is important in several respects. Two-temperature plasmas are first rele-
vant for various scientific and industrial applications. Investigating the heavy species transport linear systems considerably
broadens the applicability of the new algorithms investigated in the next sections. In addition, the resulting linear systems
obtained by suppressing the electron from the species list are especially relevant for a number of computational studies. We
will establish in particular that the numerical difficulties found for increasing ionization rates are not associated with elec-
tron. Finally, the acceleration techniques obtained with more singular formulations of the transport linear systems will also
be efficient for the heavy species.

5. Generalized inverses and stationary iterative techniques

We express the solution of transport linear systems in terms of generalized inverses with prescribed range and nullspace
[23,28,38,41,44] and review projected stationary iterative techniques in order to solve constrained singular symmetric sys-
tems [23,28,38,44]. We next introduce the more singular formulations of the transport linear systems as well as expansions
of symmetric generalized inverses into dyadic products of conjugate directions.
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5.1. Generalized inverses and transport linear systems

The transport linear systems associated with partially ionized gas mixtures can be written in the general form
Ga ¼ b;

a 2 C;

�
ð5:1Þ
where G 2 Kn;n;C is a linear subspace of Kn; a; b 2 Kn are vectors and K denotes R or C. In the isotropic case, we have
K ¼ R;G ¼ G, and either C ¼ Rn in the regular case or else C ¼ g? and NðGÞ ¼ Rz in the singular case. In the nonisotropic case,
we have K ¼ C;G ¼ Gþ iG0, and either C ¼ Cn in the regular case or else C ¼ g? þ ig? and NðGÞ ¼ Cz in the singular case.

The solutions of the transport linear systems may naturally be expressed in terms of generalized inverses with prescribed
range and nullspace [23,28,38,44]. More specifically, if G 2 Kn;n is a matrix and C and S two subspaces of Kn such that
NðGÞ � C ¼ Kn and RðGÞ �S ¼ Kn, then there exists a unique matrix Z such that GZG ¼ G;ZGZ ¼ Z;NðZÞ ¼S, and
RðZÞ ¼ C [2,4,39]. This matrix Z is termed the generalized inverse of G with prescribed range C and nullspace S and is also
such that GZ ¼ PRðGÞ;S and ZG ¼ PC;NðGÞ where for any complementary spaces R� S ¼ Kn; PR;S denote the projector onto R par-
allel to S. First order multicomponent diffusion matrices can notably be expressed as generalized inverses of Stefan–Maxwell
like matrices [38,41,44]. The well posedness of the transport linear systems (5.1) is addressed in the following proposition
and its solution a is related to generalized inverses [23,28,38,44].

Proposition 5.1. Let G 2 Kn;n be a matrix and C be a subspace of Kn. The constrained linear system (5.1) is well posed, i.e., admits
a unique solution a for any b 2 RðGÞ, if and only if
NðGÞ � C ¼ Kn: ð5:2Þ
In this situation, for any subspace S such that RðGÞ �S ¼ Kn, the solution a can be written a ¼ Zb, where Z is the generalized
inverse of G with prescribed range C and nullspace S.

The well posedness condition is easily obtained in the real and complex cases since the constraint vector g is such that
hz; gi – 0. An important property is that the proper generalized inverses are symmetric [28,44]. In the real case (2.8) the
proper generalized inverse Z of G is the one with range g? and nullspace Rg and we then have GZ ¼ I� g� z=hg; zi and
ZG ¼ I� z� g=hg; zi. In the complex case (3.7) the proper generalized inverse Z of G ¼ Gþ iG0 is the one with range
g? þ ig? and nullspace Cg and we have GZ ¼ I� g� z=hg; zi and ZG ¼ I� z� g=hg; zi. Both generalized inverses are shown
to be symmetric and Z and RZ are positive semi-definite with nullspace Rg [23,28,44]. In the real singular situation the
transport linear systems can be recast into the nonsingular form a ¼ ðGþ ag� gÞ�1b where a > 0 and the matrix
Gþ ag� g is then symmetric positive definite, and, in the complex case, we may similarly write a ¼ ðGþ iG0 þ ag� gÞ�1b
[23,37,38,44]. However, the singular formulations are more suited to iterative techniques [23].

5.2. Projected iterative algorithms

For a matrix T 2 Cn;n;rðT Þ and qðT Þ denote respectively the spectrum and the spectral radius of T , and we also define
cðT Þ ¼maxfjkj; k 2 rðT Þ; k – 1g. A matrix T is said to be convergent when limi!1T

i exists not necessarily being zero [61].
A matrix T 2 Cn;n is convergent if and only if either qðT Þ < 1 or qðT Þ ¼ 1;1 2 rðT Þ; cðT Þ < 1, and T has only elementary
divisors corresponding to the eigenvalue 1, that is, NðI � T Þ \ RðI � T Þ ¼ f0g [4,39,57,61,63].

Next, for a matrix G 2 Cn;n, the decomposition
G ¼M�W; ð5:3Þ
is a splitting if the matrix M is invertible. In order to solve the linear system Ga ¼ b, where b 2 Cn, the splitting (5.3) induces
the iterative scheme
ziþ1 ¼ T zi þM�1b; i P 0; ð5:4Þ
where T ¼M�1W. When b 2 RðGÞ, we have M�1b 2 RðI � T Þ, and the behavior of the sequence of iterates (5.4) is given in the
next lemma [4,40,57].

Lemma 5.2. Let T 2 Kn;n and let c 2 Kn such that c 2 RðI � T Þ. Then the iterative scheme ziþ1 ¼ T zi þ c; i P 0, converges for any
z0 2 Kn if and only if T is convergent. In this situation, the limit limi!1zi ¼ z1 is given by z1 ¼ �z1 þ PNðI�T Þ;RðI�T Þz0 where �z1 is
the unique solution of ðI � T Þ�z1 ¼ c such that �z1 2 RðI � T Þ.

We are now interested in solving the constrained singular system (5.1) by stationary iterative techniques. These tech-
niques provide iterates which depend linearly on the right-hand side b, and this property may be important for some appli-
cations, as for instance for multicomponent diffusion matrices. For a given splitting G ¼M�W and for b 2 RðGÞ, assuming
that the iteration matrix T ¼M�1W is convergent, the iterates (5.4) will converge for any z0. When the matrix G is singular,
we have qðT Þ ¼ 1 since T z ¼ z for z 2 NðGÞ, and neither the iterates fzi; i P 0g nor the limit z1 are guaranteed to be in the
constrained space C. In order to overcome these difficulties, we use a projected iterative scheme [38]
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z0iþ1 ¼ PT z0i þ PM�1b; i P 0; ð5:5Þ
where P ¼ PC;NðGÞ is the projector matrix onto the subspace C along NðGÞ. All the corresponding iterates fz0i; i P 0g then sat-
isfy the constraint z0i 2 C. The spectral radius of the iteration matrix PT associated with (5.5) can then be estimated by using
a theorem of Neumann and Plemmons [61] which states that qðPT Þ ¼ cðT Þ when T is convergent. This estimate can also be
deduced by investigating directly the spectrum of PT and the corresponding eigenvectors using the following result [28,44].

Theorem 5.3. Let T 2 Kn;n be a matrix such that RðI � T Þ \ NðI � T Þ ¼ f0g. Let C be a subspace complementary to NðI � T Þ, i.e.,
such that NðI � T Þ � C ¼ Kn, and let also P be the oblique projector matrix onto the subspace C along NðI � T Þ. Then we have
rðPT Þ ¼
rðT Þ n f1gð Þ [ f0g; if NðI � T Þ– f0g;
rðT Þ; if NðI � T Þ ¼ f0g;

�

and the matrices T and P satisfy the relation PT ¼ PTP. In addition, if k – 1 and x – 0 are such such that T x ¼ kx, then y ¼ Px is
an eigenvector for the product PT associated with the eigenvalue k, that is, PT y ¼ ky.

In order to obtain convergent iteration matrices – and therefore convergent projected iterative schemes for the transport
linear systems in the real case – we may then use Keller’s theorem [51].

Theorem 5.4. Let G 2 Rn;n be a symmetric matrix and let G ¼ M �W be a splitting such that M is symmetric and M þW is
positive definite. Then T ¼ M�1W is convergent if and only if G is positive semi-definite.
Combining then Keller’s theorem, the spectral Theorem 5.3, and the mathematical structure resulting from the kinetic
theory of gases, we may use in the real situation the splitting matrices
M ¼ dbðGÞ þ diagðr1; . . . ;rnÞ; ð5:6Þ
where dbðGÞ is the sparse transport matrix and r1; . . . ;rn are any nonnegative factors. Indeed,
M þW ¼ 2dbðGÞ � Gþ 2diagðr1; . . . ;rnÞ, and we deduce that M þW is positive definite from ðG1 � G2Þ, so that Keller’s the-
orem can be used. The convergence of projected iterative algorithms and the asymptotic expansion of generalized inverses
are then obtained [28]. On the other hand, in the complex case, in order to obtain an iterative scheme with convergence
properties valid for any matrix G0, that is, for any magnetic field intensity B, we may include the full imaginary part iG0 of
G in the splitting matrix M
M ¼ dbðGÞ þ diagðr1; . . . ;rnÞ þ iG0: ð5:7Þ
Then M ¼ M þ iG0 and G ¼ M �W is a splitting of the real matrix G. This can be done in practice since the inverse of the
matrix M ¼ M þ iG0 is easily expressed in terms of the inverse of M þ iD0 when G0 is in the form G0 ¼ QD0P [44]. Note that
Keller’s theorem cannot be applied directly as in the real case since G is not Hermitian when G0 is nonzero [44]. The conver-
gence and properties of the projected iterative algorithms (5.5) when applied to the real or complex symmetric constrained
singular systems (5.1) are summarized in the following statement [28,44].

Theorem 5.5. Let G ¼ Gþ iG0 where G;G0 are real symmetric matrices, G is positive semi-definite and G0NðGÞ ¼ 0. Let C � Rn be a
subspace complementary to NðGÞ and let C ¼ C þ iC. Consider a splitting G ¼ M �W, assume that M is symmetric and that M þW
is positive definite, so that M is also symmetric positive definite. Define M ¼ M þ iG0;G ¼M�W, so that W ¼W, and
T ¼M�1W; T ¼ M�1W. Let P ¼ P be the oblique projector matrix onto the subspace C along NðGÞ. Let also
b 2 RðGÞ; z0 2 Cn; z00 ¼ Pz0, and consider for i P 0 the iterates ziþ1 ¼ T zi þM�1b as in (5.4) and z0iþ1 ¼ PT z0i þ PM�1b as in
(5.5). Then z0i ¼ Pzi for all i P 0, the matrices T ;PT ; T, and PT are convergent, qðTÞ ¼ qðT Þ ¼ 1 when dim NðGÞð ÞP
1;qðPT Þ ¼ cðT Þ < 1;qðPTÞ ¼ cðTÞ < 1, and
cðT Þ 6 cðTÞ; ð5:8Þ
so that the convergence rate is never worse in the magnetized case G0 – 0. Moreover, we have the following limits
lim
i!1

z0i ¼ Pðlim
i!1

ziÞ ¼ a ¼
X

06j<1
ðPT ÞjPM�1b; ð5:9Þ
where a is the unique solution of (5.1). Moreover, each partial sum Zi; i P 1, given by Zi ¼
P

06j6i�1ðPT Þ
j
PM�1Pt is symmetric

and limi!1Zi ¼ Z where
Z ¼
X

06j<1
ðPT ÞjPM�1Pt; ð5:10Þ
is the symmetric generalized inverse of G with prescribed nullspace NðZÞ ¼ C? þ iC? and range RðZÞ ¼ C ¼ C þ iC. Similar prop-
erties hold in the real case where G0 ¼ Z0 ¼ 0 and Z ¼

P
06j<1ðPTÞjPM�1Pt is real and is the generalized inverse of G with prescribed

range RðZÞ ¼ C and nullspace NðZÞ ¼ C?, and each iterate Zi ¼
P

06j<i�1ðPTÞjPM�1Pt is positive semi-definite with RðZiÞ ¼ C.
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The projected iterative algorithms (5.5) applied to the transport linear systems have been successful for accurate evalu-
ation of multicomponent diffusion matrices in nonionized gas mixtures [23,25,27,28,38]. When applied to partially ionized
mixtures, these algorithms have been found efficient at low ionization levels [36,44]. The convergence rates are insensitive to
the intensity of the magnetic when the whole complex part iG0 is included in the splitting matrix M ¼ M þ iG0 as shown by
the estimate (5.8).

However, as investigated by García Muñoz [36] for planetary atmosphere and reported by Giovangigli and Graille for high
temperature air [44], the corresponding convergence rates deteriorate when ionization levels increase and then convergence
becomes prohibitively slow. The solution of this problem requires introducing new formulations of the transport linear sys-
tems investigated in the following section. The stationary projected iterative algorithms will then be performed with the
new formulations.

5.3. Generalized inverses and conjugate directions

We consider in this section the transport linear system in the real singular case (2.8) under assumption ðG2Þ and we write
z1 ¼ z and g1 ¼ g. The matrix G is symmetric positive semi-definite, NðGÞ ¼ Rz1; hz1; g1i > 0, and we denote by Z the general-
ized inverse of G with prescribed nullspace NðZÞ ¼ Rg1 and range RðZÞ ¼ g?1 . Letting Q ¼ Pt ¼ I� g1 � z1=hg1; z1i, we have the
relations GZ ¼ Q ; ZG ¼ P, and Z is symmetric positive semi-definite. We now select z	2 2 Rn such that z	2 R Rz1 and define
z2 ¼ z	2 �
hz	2; g1i
hz1; g1i

z1; g2 ¼ Gz2: ð5:11Þ
Note that hz2; g2i > 0 since hz2; g2i ¼ hz2;Gz2i and z2 R NðGÞ ¼ Rz1, and by construction we have hz2; g1i ¼ 0 and hz1; g2i ¼ 0,
so that g2 R Rg1. We then introduce
G2 ¼ G� g2 � g2

hz2; g2i
; Z2 ¼ Z � z2 � z2

hz2; g2i
; ð5:12Þ

P2 ¼ I� z1 � g1

hz1; g1i
� z2 � g2

hz2; g2i
; Q 2 ¼ I� g1 � z1

hz1; g1i
� g2 � z2

hz2; g2i
; ð5:13Þ
and by a direct calculation we obtain that G2Z2 ¼ Q 2; Z2G2 ¼ P2. Since hG2x; xi ¼ hGw;wi where w ¼ x� z2hx; g2i=hz2; g2i, it is
easily deduced that G2 is positive semi-definite and NðG2Þ ¼ spanfz1; z2g. Proceeding similarly for Z2 we obtain that Z2 is po-
sitive semi-definite and NðZ2Þ ¼ spanfg1; g2g. In particular, Z2 is the generalized inverse of G2 with prescribed nullspace
NðZ2Þ ¼ spanfg1; g2g and range RðZ2Þ ¼ spanfg1; g2g

?. Letting a2 ¼ Z2b; b2 ¼ Q2b, we obtain after some algebra the new trans-
port linear system
G2a2 ¼ b2;

ha2; g1i ¼ ha2; g2i ¼ 0:

�
ð5:14Þ
It is easily checked that NðG2Þ � spanfg1; g2g
? ¼ Rn and b2 2 RðG2Þ so that that the system (5.14) is well posed from Prop-

osition 5.1. Its unique solution is thus given by a2 ¼ Z2b and the solution of the original system a can then be written
a ¼ a2 þ
hz2; bi
hz2; g2i

z2: ð5:15Þ
The main idea is that the projected iterative algorithm applied to the more singular system (5.14) may involve a matrix
P2T2 with a lower spectral radius than that of PT by properly selecting z	2.

Let indeed G ¼ M �W be a splitting with M and M þW symmetric positive definite and T ¼ M�1W . The matrix T is sym-
metric with respect to the scalar product hhx; yii ¼ hMx; yi since hhTx; yii ¼ hWx; yi so that T has only real eigenvalues and a
basis of right eigenvectors orthonormal with respect to hh; ii. Moreover, qðTÞ � ð�1;1� since T is convergent. Let us assume
– as a typical example – that z	2 is an eigenvector associated with an eigenvalue 1� � of T so that Gz	2 ¼ �Mz	2 with z	2 – 0.
Assume also that � is small so that this eigenvalue is the worse. All eigenvalues different from unity and different from
the isolated eigenvalue 1� � are assumed to be in ð�a;aÞ with 0 < a < 1� �. From the spectral Theorem 5.3 we know that
1� � is also an eigenvalue of the matrix PT with eigenvector Pz	2 and that all nonzero eigenvalue of PT are similarly nonunity
eigenvalues of T. Defining z2 and g2 as in (5.11), we have spanfz1; z2g ¼ spanfz	1; z	2g and g2 ¼ Gz2 ¼ Gz	2. Then z	2 can be taken
of order unity but g2 ¼ Gz	2 ¼ �Mz	2 is small, say Oð�Þ. From the expressions (5.12) we obtain that G� G2 ¼ Oð�Þ and
Z � Z2 ¼ Oð1=�Þ. Since G and G2 are close, upon writing G ¼ M �W and G2 ¼ M2 �W2; T ¼ M�1W ; T2 ¼ M�1

2 W2, where M
and M2 are symmetric positive definite, we may let M2 ’ M;W2 ’W . On the other hand, it is established [44,40] that
cðTÞ ¼ sup
jhWx; xij
hMx; xi ; x 2 Rn; x – 0; hMz1; xi ¼ 0

� 	
;

cðT2Þ ¼ sup
jhW2x; xij
hM2x; xi ; x 2 Rn; x – 0; hM2z1; xi ¼ hM2z2; xi ¼ 0

� 	
:

This results from the symmetry of T with respect to the scalar product hhx; yii ¼ hMx; yi since hhTx; yii ¼ hWx; yi so that
jhWx; xij=hMx; xi is the corresponding Rayleigh quotient, with a similar argument for T2. Moreover, we have the relation
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hhz1; z
	
2ii ¼ 0 since these vectors are associated with different eigenvalues so that hMz1; z

	
2i ¼ 0. The maximum value of the

Rayleigh quotient jhWx; xij=hMx; xi for cðTÞ is then obtained with x ¼ z	2 since we have assumed that 1� � is the worse eigen-
value. We then see that this bad eigenvalue 1� � of T associated with the vector z	2 is eliminated when estimating cðT2Þ since
NðG2Þ ¼ NðI� T2Þ ¼ spanfz1; z2g contains z	2. More specifically, the relevant vectors to be considered for cðT2Þ are now
orthogonal to M2z1 and M2z2 and are thus orthogonal M2z

	
2, and this excludes the vector z	2. In addition, from Theorem 5.3,

all eigenvectors of P2T2 associated with nonzero eigenvalues of P2T2 are projections of eigenvectors of T2 in such a way that
the components of such eigenvectors of T2 along spanfz1; z2g are eliminated by P2.

In the asymptotic situation where � is small, a connection may be made with deflation techniques that have been intro-
duced for solving invertible nearly singular systems. These methods separate the solution component along an approximate
nullvector from its orthogonal complement and have notably been investigated by Chan [14,15] and Stewart [69]. The frame-
work associated with transport linear systems is quite different since we investigate exactly singular systems, with a special
symmetric structure inherited from mathematical physics, and we are interested in symmetric generalized inverses and solu-
tion by stationary iteration techniques. Moreover the vectors under concern are eigenvalue of the iteration matrix T or equiv-
alently of the symmetric-definite pencil G� kM and not of the original matrix G. Nevertheless, we can make a parallel with
these techniques in the asymptotic situation where � is small since the projector P2 has a larger nullspace than P and Z2 is a
more stable component of the generalized inverse Z. We may then term Z2 a deflated generalized inverse and similarly P2T2 an
iteration matrix with a deflated spectrum since the bad eigenvalue 1� � in PT has been eliminated from P2T2.

In practice, however, the eigenvalues of T different from unity are not necessarily close to unity or either to �1. We may
still obtain a spectral radius of the iteration matrix qðP2T2Þ significantly lower than the radius of qðPTÞ by eliminating the
worse eigenvalue, provided it is clearly separated from the other eigenvalues. To this aim, it is sufficient that spanfz	1; z	2g
contain an approximation of the corresponding eigenvector. In other words, the spectrum modification can be very effective
and robust provided we can approximate the eigenvector associated with the worse eigenvalue and that the Rayleigh quo-
tients associated with T and T2 are approximately similar. This will notably be the case for the transport linear systems asso-
ciated with multicomponent diffusion in partially ionized mixtures, even though the eigenvalues of the corresponding
iteration matrices are not close to unity or minus unity.

It is possible to generalize this construction and to expand the matrices G and Z into tensor products of conjugate direc-
tions. We may then introduce the corresponding more singular formulations of the transport linear systems [40]. This gen-
eralization may be used to suppress a group of worse eigenvalues of the matrix T. We summarize here this construction and
refer to [40] for more details and for the mathematical aspects.

Let z	i ;1 6 i 6 n, be a basis of Rn with z	1 ¼ z, and define for convenience z1 ¼ z	1g1 ¼ g;G1 ¼ G; Z1 ¼ Z; P1 ¼ P;Q1 ¼ Q . One
can then construct inductively for k P 2
zk ¼ z	k �
X

16j6k�1

hz	k; gji
hzj; gji

zj; gk ¼ Gk�1zk; ð5:16Þ

Gk ¼ Gk�1 �
gk � gk

hzk; gki
; Zk ¼ Zk�1 �

zk � zk

hzk; gki
: ð5:17Þ
These vectors zi; gi;1 6 i 6 n, are such that hzi; gii > 0; zi ¼ Zi�1gi;1 6 i 6 n; hzi; gji ¼ 0 if i – j;1 6 i; j 6 n. Moreover, for
0 6 k 6 n we have the relations GkZk ¼ Qk; ZkGk ¼ Pk, where Pk is the projector onto spanfg1; . . . ; gkg

? parallel to
spanfz1; . . . ; zkg, and Qk is the projector onto spanfz1; . . . ; zkg? parallel to spanfg1; . . . ; gkg. In addition, Gk and Zk are symmet-
ric positive semi-definite, NðGkÞ ¼ spanfz1; . . . ; zkg;RðGkÞ ¼ spanfz1; . . . ; zkg?, and Zk is the generalized inverse of Gk with pre-
scribed nullspace NðZkÞ ¼ spanfg1; . . . ; gkg and range RðZkÞ ¼ spanfg1; . . . ; gkg

?. Finally, we have gi ¼ Gzi; zi ¼ Zgi;2 6
i 6 n; g? ¼ spanfz2; . . . ; zng, the directions zi;2 6 i 6 n, are conjugate for G, the directions gi;2 6 i 6 n are conjugate for Z,
and we have the decompositions
G ¼
X

26i6n

gi � gi

hzi; gii
; Z ¼

X
26i6n

zi � zi

hzi; gii
: ð5:18Þ
Letting bk ¼ Qkb, we can then generalize the transport linear systems (2.8) and (5.14) – corresponding respectively to
k ¼ 1 and k ¼ 2 – in the form
Gkak ¼ bk;

hak; gli ¼ 0; 1 6 l 6 k:

�
ð5:19Þ
This system is well posed, its solution is ak ¼ Zkb, and we have the expansion
a ¼ ak þ
X

16l6k

hzl; bi
hzl; gli

zl: ð5:20Þ
5.4. Conjugate directions in the anisotropic situation

We consider in this section the transport linear system in the complex singular case (3.7) under assumptions ðG2ÞðG02Þ and
we write z ¼ z1 and g ¼ g1. The matrix G is in the form G ¼ Gþ iG0, where G;G0 are symmetric, G positive semi-definite,
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NðGÞ ¼ Rz1;G
0z1 ¼ 0, and we denote by Z the generalized inverse of Gþ iG0 with prescribed nullspace NðZÞ ¼ Cg1 and range

RðZÞ ¼ g?1 þ ig?1 . We have the relations GZ ¼ Q ;ZG ¼ P, where Q ¼ Pt ¼ I� g� z=hg; zi, and Z is symmetric. However, a con-
jugate directions expansion cannot be performed as easily as in the real case since the nondegenerate bilinear form ð; Þ nat-
urally associated with complex symmetric matrices is nondefinite in Cn. We may indeed encounter breakdowns arising from
zero scalar product in the decomposition into conjugate directions. In order to avoid such problems we have to restrict the
vectors z	i ;1 6 i 6 n, to be real vectors.

Let thus assume that z1 ¼ z	1 and z	2 2 Rn; z	2 R Rz1 and define z2 and g2 by letting
z2 ¼ z	2 �
ðz	2; g1Þ
ðz1; g1Þ

z1; g2 ¼ Gz2: ð5:21Þ
Then we have z2 2 Rn; g2 2 Cn; ðz2; g1Þ ¼ 0; ðg2; z1Þ ¼ 0;Rðz2; g2Þ ¼ hGz2; z2i – 0 since z2 R NðGÞ ¼ Rz1. Moreover Zg2 ¼
ZGz2 ¼ z2 since ðz2; g1Þ ¼ 0 and spanfz1; z2g ¼ spanfz	1; z	2g. Defining then
G2 ¼ G � g2 � g2

ðz2; g2Þ
; Z2 ¼ Z � z2 � z2

ðz2; g2Þ
; ð5:22Þ

Q2 ¼ I� g1 � z1

ðz1; g1Þ
� g2 � z2

ðz2; g2Þ
; P2 ¼ I� z1 � g1

ðz1; g1Þ
� z2 � g2

ðz2; g2Þ
; ð5:23Þ
a direct calculation yields the relations G2Z2 ¼ Q2;Z2G2 ¼ P2, and P2 is the projector onto spanfg1; g2g
? parallel to

spanfz1; z2g;Q2 is the projector onto spanfz1; z2g? parallel to spanfg1; g2g. After some algebra it is shown that Z2 is the gen-
eralized inverse of G2 with prescribed nullspace NðZ2Þ ¼ spanfg1; g2g and range RðZ2Þ ¼ spanfg1; g2g

?. Letting b2 ¼ Q2b, we
obtain the new transport linear system
G2a2 ¼ b2;

ða2; g1Þ ¼ ða2; g2Þ ¼ 0:

�
ð5:24Þ
This system is well posed and its unique solution is given by a2 ¼ Z2b and the solution of the original system a can be
written
a ¼ a2 þ
ðz2; bÞ
ðz2; g2Þ

z2: ð5:25Þ
One may investigate more closely the structure of the matrices RðG2Þ and IðG2Þwhen IðG1Þ ¼ G0 is in the form G0 ¼ QD0P.
After some lengthy algebra, thanks to z2 2 Rn, one can establish that
RðG2Þ ¼ G� Gz2 � Gz2

hGz2; z2i
þ r2 � r2

hGz2; z2im2 ;

IðG2Þ ¼ I� s1 � z1 � s2 � z2ð ÞD0 I� z1 � s1 � z2 � s2ð Þ;
where m2 ¼ ðGz2; z2Þ2 þ ðG0z2; z2Þ2;D0 is the diagonal matrix such that G0 ¼ QD0P, and where r2 ¼ ðG0z2; z2ÞGz2�
ðGz2; z2ÞG0z2; s1 ¼ g1=hz1; g1is2 ¼ mGz2 þ ðGz2; z2ÞGz2 þ ðG0z2; z2ÞG0z2

� �
=m mþ ðGz2; z2Þð Þ. As a consequence, IðG2Þ shares a sim-

ilar form with IðG1Þ and the inverse of M þ iIðG2Þ is easily expressed in terms of the inverse of M þ iD0 as described in Giov-
angigli and Graille [44]. These expressions simplify when ðG0z2; z2Þ ¼ 0 and m ¼ ðGz2; z2Þ which sometimes happens in
practice.

As in the real case, upon introducing the splittings G ¼M�W and G2 ¼M2 �W2, and the corresponding iteration matri-
ces T ¼M�1W; T 2 ¼M�1

2 W2, we may expect the spectral radius of the iteration matrix P2T 2 to be lower than that of PT by
properly selecting the vector z	2 by eliminating any isolated worse eigenvalue of T . This procedure can also be generalized as
in the real case provided that z	i ;1 6 i 6 n, form a basis of real vectors but the details are omitted and we refer to [40].
6. Orthogonal residuals algorithms

Conjugate gradients-type methods – used with preconditioning – are among the most effective iterative procedures for
solving Hermitian systems [46,49,54]. Projected conjugate gradients methods have been introduced in particular to solve
real symmetric constrained singular semi-definite systems arising from multicomponent transport [23,25,28,38]. For general
linear systems, however, one cannot obtain short recurrence algorithms which globally minimize some error norm over the
corresponding Krylov subspaces unless the matrix has certain rather special spectral properties [30]. Complex symmetric
systems have been investigated motivated by electromagnetic applications [3,31,33,34,43,44]. In particular, projected
orthogonal residuals algorithms have been investigated in order to solve the complex symmetric constrained singular sys-
tems arising from magnetized multicomponent transport [31,43,44]. These algorithms reduce to projected conjugate gradi-
ents methods in the absence of magnetization, that is, when the imaginary part of the system matrix vanishes.

We investigate in this section orthogonal residuals techniques and the links with expansions into conjugate directions
obtained in the previous section.
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6.1. Projected orthogonal directions

We consider a matrix in the form G ¼ Gþ iG0 where G;G0 are real symmetric matrices, G is positive semi-definite and
G0NðGÞ ¼ 0, a vector b 2 RðGÞ, a subspace C � Rn complementary to NðGÞ and C ¼ C þ iC. The projector onto C parallel to
NðGÞ þ iNðGÞ ¼ NðGþ iG0Þ coincide with the projector onto C parallel to NðGÞ and is denoted by P. The projected precondi-
tioned orthogonal residuals algorithm can be described as follows [31,44].

Assume that M 2 Rn;n is hermitian positive definite. Let z0 2 Cn, be an initial guess, z00 ¼ Pz0; r00 ¼ b� Gz00; p
0
0 ¼ PM�1r00. If

hGp00; p
0
0i ¼ 0 we stop at step 0, whereas if hGp00; p

0
0i– 0 we define r00 ¼ hr00; p00i=hGp00; p

0
0i; m000 ¼ hGM�1Gp00; p

0
0i=hGp00; p

0
0i, and

p01 ¼ PM�1Gp00 � m000p00; z
0
1 ¼ z00 þ r00p00, and r01 ¼ r00 � r00Gp00. Assume now by induction that for k P 1 we have defined

fp0ig06i6k; fz0ig06i6k; fr0ig06i6k, with
Q

06i6k�1hGp0i; p
0
ii – 0; r0i ¼ b� Gz0i;0 6 i 6 k, and
hM�1r0i; r
0
ji ¼ 0; 0 6 j < i 6 k; ð6:1Þ

hGp0i;p
0
ji ¼ 0; 0 6 j < i 6 k; ð6:2Þ

hr0i;p0ji ¼ 0; 0 6 j < i 6 k; ð6:3Þ

Ki ¼ spanðr00; . . . ; r0iÞ;¼ spanðr00; . . . ; ðGM�1Þir00Þ; 0 6 i 6 k; ð6:4Þ
K0i ¼ spanðp00; . . . ; p0iÞ ¼ PM�1Ki; Ki ¼ HK0i; 0 6 i 6 k; ð6:5Þ
where dimðKiÞ ¼ iþ 1 for 0 6 i 6 k� 1 and where H ¼ I�
P

16i;j6pcijzi �Mzj and ðcijÞ16i;j6p is the inverse of the matrix
hMzi; zji
� �

16i;j6p and dimðKiÞ ¼ dimðK0iÞ ¼ iþ 1 for 0 6 i 6 k� 1. Then hGp0k; p
0
ki ¼ 0 if and only if r0k ¼ 0 and in this situation

we stop at step k. On the other hand if hGp0k; p
0
ki – 0 we introduce the solution m0k0; . . . ; m0kk of the linear systems
hGp00;p
0
0i

hGp00;p
0
1i hGp01; p

0
1i

..

. ..
. . .

.

hGp00;p
0
ki hGp01; p

0
ki . . . hGp0k;p

0
ki

0BBBB@
1CCCCA

m0k0

m0k1

..

.

m0kk

0BBBB@
1CCCCA ¼

hGM�1Gp0k; p
0
0i

hGM�1Gp0k; p
0
1i

..

.

hGM�1Gp0k; p
0
ki

0BBBBB@

1CCCCCA; ð6:6Þ
we define r0k ¼ hr0k; p0ki=hGp0k; p
0
ki and we set
p0kþ1 ¼ PM�1Gp0k �
X

06j6k

m0kjp
0
j; z0kþ1 ¼ z0k þ r0kp0k; r0kþ1 ¼ r0k � r0kGp0k: ð6:7Þ
Theorem 6.1. The projected preconditioned orthogonal residuals algorithm is well defined and converges in at most rankðGÞ steps
towards the unique solution a of Ga ¼ b and a 2 C. Moreover, the iterates z0k; k P 1, are the projections of the iterates zk; k P 1, of
the corresponding unprojected algorithm [44].

When the magnetic part G0 vanishes and G ¼ G is symmetric positive semi-definite we recover the projected version of
the preconditioned conjugate gradient algorithm [31,28] and other preconditioning techniques are discussed in Giovangigli
and Graille [44].

6.2. Conjugate directions versus conjugate gradients

When applied to a symmetric positive semi-definite matrix G the projected orthogonal residuals algorithm yield the pro-
jected conjugate gradient algorithm for singular systems [31,44]. Starting form x0 ¼ 0, the approximate solution is then ob-
tained in the form
p00
hr00; p00i
hGp00;p

0
0i
þ � � � þ p0l

hr0l;p0li
hGp0l; p

0
li
;

where lþ 1 is the dimension of the subspace spanned by the vectors ðGM�1Þkb; k P 0. Thanks to the symmetry of G we have
the classical relations hr0l; p0li ¼ hr00; p0li ¼ hb; p0li where b ¼ Ptb ¼ r00 in such a way that the generalized inverse Z has been
approximated in the form
p00 � p00
hGp00;p

0
0i
þ � � � þ p0l � p0l

hGp0l;p
0
li
:

An important difference with the expansion into conjugate directions (5.18) is therefore that the fixed
subspaces spanfz1; . . . ; zkg; k P 1, have been replaced by the projected preconditioned Krylov subspaces
PM�1 spanfb; . . . ; ðGM�1Þibg; i P 0, which depend on b. In addition, the algorithm associated with the expansion (5.18) is lin-
ear whereas orthogonal residuals algorithms are non linear. Finally, we obtain with the orthogonal residuals algorithm the
important relations hM�1r0i; r

0
ji ¼ 0;0 6 i; j 6 l. Since the more singular formulation is associated with a decomposition of the

generalized inverse Z in the form
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Z ¼ z2 � z2

hGz2; z2i
þ Z2;
we also conclude that using the more singular formulation (5.14) (5.15) with projected conjugate gradients then constrain
the first projected search direction p00 to be the vector z2 and the subsequent directions are next chosen in the Krylov sub-
spaces associated with G2. Using the more singular formulations thus automatically leads to deflated conjugate gradient
techniques introduced to solve invertible nearly singular systems [68]. Note however, that the framework associated with
transport linear systems is quite different since we consider exactly singular systems, that we are interested in a con-
strained solution obtained upon projecting the search directions, and that in practice the vectors z2 are not quasi
nullvectors.

Similarly, in the complex magnetized case, starting from z0 ¼ 0, the approximate solution is then obtained in the form
p00
hr00;p00i
hGp00; p

0
0i
þ � � � þ p0l

hr0l;p0li
hGp0l;p

0
li
; ð6:8Þ
where lþ 1 is the dimension of the subspace spanned by the vectors ðGM�1Þkb; k P 0. When G is not Hermitian, we do not
have a simple relation between hr0i; p0ii and hr00; p0iiwhere r00 ¼ Pb ¼ b. The more complex relation between hr0i; p0ii and the sca-
lar products hr00; p00i; . . . ; hr00; p0ii is investigated in [40]. However, when z2 is a real vector, we have ðGz2; z2Þ ¼ hGz2; z2i and from
the decomposition
Z ¼ z2 � z2

ðGz2; z2Þ
þ Z2;
we conclude that using a projected orthogonal residuals algorithm with the more singular formulation (5.24) (5.25) con-
strain the first projected search direction p00 to be the real direction z2 and the subsequent directions are next chosen in
the Krylov subspaces associated with G2.
7. Application to diffusion matrices

We investigate in this section the use of stationary iterative techniques in order to evaluate multicomponent diffusion
matrices. Evaluating diffusion coefficients is usually required for implicit time marching techniques. We discuss the expan-
sions of diffusion matrices obtained by using projected iterative algorithms with both the natural and the more singular for-
mulations of the transport linear systems. We also consider first order and higher order diffusion matrices as well as
isotropic and magnetized mixtures.

In order to assess the accuracy of the resulting algorithms, numerical experiments are performed with high temperature
air. The corresponding mixture is constituted by the ns ¼ 11 species N2, O2, NO, N, O, Nþ2 ;O

þ
2 , NO+, N+, O+, and e. The Ther-

modynamic properties have been estimated from Gupta, Yos, Thomson and Lee [48] and the collision integrals from Wright,
Bose, Palmer, and Levin [71]. We have considered typical mixtures with
XN2 ¼ XO2 ¼ XNO ¼ XN ¼ XO ¼ 0:2ð1� 10xÞ;
XNþ2
¼ XOþ2

¼ XNOþ ¼ XNþ ¼ XOþ ¼ x; Xe ¼ 5x;
and the ionization parameter x is such that 0 6 x 6 0:1. The corresponding ionization level or degree is then Xe ¼ 5x. The
accuracy of the asymptotic expansions is investigated as depending on the ionization parameter x and the intensity of
the magnetic field B. The species mass fractions are denoted by y1; . . . ; yns and are such that yk > 0; k 2 S, and

P
k2Syk ¼ 1.

In all the numerical experiments, the pressure is taken to be p ¼ 0:1 atm and the temperature T ¼ Th ¼ 10;000 K. Using other
pressures or temperatures would not significantly modify the accuracy of the asymptotic expansions. Similar results have
also been obtained for other choices of the mixture mole fractions.
7.1. The real first order matrix

We investigate in this section the evaluation of the first order diffusion matrix D½00�. The corresponding ns systems pre-
sented in Table 1 are of size n ¼ ns and in the form
DaDk
½00� ¼ bDk

½00�;

haDk
½00�; yi ¼ 0;

8<: k 2 S; ð7:1Þ
and the first order diffusion coefficients are then evaluated from
D½00�kl ¼ haDk
½00�; b

Dl
½00�i; k; l 2 S: ð7:2Þ
The Stefan–Maxwell matrix D can be written [13,32,38,39]
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Dkk ¼
X
l2S

l – k

XkXl

Dkl
; k 2 S; Dkl ¼ �

XkXl

Dkl
; k; l 2 S; k – l;
where X1; . . . ;Xs
n are the species mole fractions, Dkl; k; l 2 S, the species binary diffusion coefficients, and the constraint vector

y is the mass fractions vector y ¼ ðy1; . . . ; ys
nÞ

t . The matrix D is symmetric positive semi-definite with nullspace
NðDÞ ¼ Ru;RðDÞ ¼ u?, where u ¼ ð1; . . . ;1Þt 2 Rns

;2diagðDÞ � D is positive definite when ns P 3 and D is a singular M-matrix
[38,62]. The right hand sides bDk

½00�; k 2 S, are given by
bDk
½00� ¼ ek � y; k 2 S;
where ek; k 2 S, are the standard basis vectors of Rns
and bDk

½00�i ¼ dki � yi; i; k 2 S. Since bDk
½00� 2 RðDÞ; k 2 S, and hu; yi ¼ 1, the

transport linear systems (7.1) are well posed and from D½00�kl ¼ hDaDk
½00�; a

Dl
½00�i and the symmetry of D, we obtain the symmetry

of D½00�. We also have D½00�kl ¼ haDk
½00�; b

Dl
½00�i ¼ ha

Dk
½00�; e

li since haDk
½00�; yi ¼ 0 and D½00�kl ¼ aDk

½00�l ¼ aDl
½00�k. The transport linear systems

(7.1) imply the matrix relations DD½00� ¼ Q ; and D½00�y ¼ 0 where Q ¼ I� y� u ¼ ½bD1
½00�; . . . ; bDns

½00� �. After some algebra it is easily

obtained that D½00� is the generalized inverse of D with prescribed nullspace Ry and range y? and for a > 0 we have

D½00� ¼ ðDþ ay� yÞ�1 � ð1=aÞu� u [37,38].
As a direct application of Section 5, from the convergence of the projected iterative algorithm applied to (7.1), or equivalently

from the expansion of generalized inverses (5.10), we deduce that upon using the splitting D ¼ M �W , with M ¼ D and
D ¼ diag
D11

1� y1
; . . . ;

Dns ;ns

1� yns

� �
; ð7:3Þ
and letting T ¼ M�1W and P ¼ Qt ¼ I� u� y, we have the convergent asymptotic expansion [38]
D½00� ¼
X

06j<1
ðPTÞjPM�1Pt : ð7:4Þ
In the first term PM�1Pt the matrix M�1 corresponds to the Hirschfelder-Curtiss approximation and the projector operation P
to the addition of a species independent mass conservation corrector [38,64,65]. The next approximation of D½00�with two terms
is more interesting since it is much more accurate and still yields ðnsÞ2 coefficients within O ðnsÞ2

� �
operations [29,38].

The rescaled errors of the various iterates associated with the classical expansion (7.4) are presented in Fig. 1 for the ion-
ization parameter x ¼ 10�4; x ¼ 10�3, and x ¼ 10�2. These errors are calculated with the Frobenius matrix norm
kAk2 ¼

P
16i;j6na2

ij and rescaled by the initial error. We can see that the convergence rates deteriorate as the ionization param-
eter x increases as first investigated by Garcı́a Muñoz [36] for planetary atmospheres. In particular, the convergence behavior
for x ¼ 10�2, one of the worse case encountered, is not satisfactory.

We also investigated a splitting matrix M taking into account the line and column corresponding to the electron in D.
Assuming that the electron is the nsth species, this matrix M is defined by Mij ¼ Dij if i – ns and j – ns, and Mij ¼ Dij otherwise.
However, it only marginally improved the bad convergence rates observed with increasing ionization levels, suggesting that
the small coefficients in D and the large coefficient in D½00� associated with electron [42] are not at the origin of the problem.
This has been confirmed by investigating the heavy species first order diffusion matrix associated with nonequilibrium mod-
els – where the electron species is simply suppressed – which yielded similar results as those presented in Fig. 1.

In order to improve the convergence rates for increasing ionization levels, we have used the more singular formulation
(5.14) with the vector u	2 defined by ðu2Þ	k ¼ 1 if k 2 I and ðu2Þ	k ¼ 0 otherwise, where I denotes the set of ionized species.
Letting yc ¼

P
k2Iyk the resulting vector u2 is such that ðu2Þk ¼ 1� yc if k 2 I and ðu2Þk ¼ �yc otherwise. Defining u1 ¼ u;
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1. Reduced errors of first order classical approximate diffusion matrices for various ionized mixtures; j x ¼ 10�4; 
 x ¼ 10�3, and N x ¼ 10�2.
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y1 ¼ y; y2 ¼ Du2;D2 ¼ D� y2 � y2=hu2; y2iðD½00�Þ2 ¼ D½00� � u2 � u2=hu2; y2i, we then have D2ðD½00�Þ2 ¼ Q 2 where Q 2 ¼ Q�
u2 � y2=hu2; y2i and N ðD½00�Þ2

� �
¼ spanfy1; y2g. The more singular formulation associated with (7.1) can then be written
Fi
D2ðaDk
½00�Þ2 ¼ ðb

Dk
½00�Þ2;

ðaDk
½00�Þ2; y1

D E
¼ ðaDk

½00�Þ2; y2

D E
¼ 0;

8<: k 2 S; ð7:5Þ
where ðbDk
½00�Þ2 ¼ Q2bDk

½00� and ðD½00�Þ2 may equivalently be defined by ðD½00�Þ2kl ¼ ðaDk
½00�Þ2; ðb

Dl
½00�Þ2

D E
¼ 0; k; l 2 S. We next set

D2 ¼ M2 �W2, where M2 is a diagonal matrix, as for instance M2 ¼ D2 with
D2 ¼ diag
ðD2Þ11

1� ðy1Þ1 � ðy2Þ1
; . . . ;

ðD2Þns ;ns

1� ðy1Þns � ðy2Þns

� �
: ð7:6Þ
When all mass fractions are positive the coefficients ðD2Þkk and ðQ 2Þkk ¼ 1� ðy1Þk � ðy2Þk are always positive provided
there are at least two neutral and two ionized species in the mixture. Upon letting T2 ¼ M�1

2 W2 and P2 ¼ Q t
2 ¼ I�

u1 � y1=hu1; y1i � u2 � y2=hu2; y2i we have the expansion
D½00� ¼
u2 � u2

hu2; y2i
þ
X

06j<1
ðP2T2ÞjP2M�1

2 Pt
2: ð7:7Þ
The resulting errors of the successive approximations are presented in Fig. 2 for the ionization parameter
x ¼ 10�4; x ¼ 10�3, and x ¼ 10�2. These results show the much better convergence behavior of the modified iterates (7.7).

An eigenvalue analysis indeed reveals that there is one relatively isolated bad eigenvalue of the matrix T associated with
the classical expansion (7.4) when the ionization degree increases. The corresponding eigenvectors further suggest the use of
the vector u	2 defined by ðu2Þ	k ¼ 1 if k 2 I and ðu2Þ	k ¼ 0 otherwise. That is, this eigenvector is approximately in
spanfu	1; u	2g ¼ spanfu1; u2g. This eigenvalue may be associated with the small values of the binary diffusion coefficients be-
tween positively charged ions as already analyzed by García Muñoz [36]. This also explains why bad convergence rates are
still observed for the heavy species diffusion matrices without electron. In Fig. 3 are then presented the errors associated
with the classical and new expansions of the heavy species first order diffusion matrices for x ¼ 10�2. This figure confirms
that the modified formulation also improve the convergence rates for the heavy species first order diffusion matrices.

Finally, using a more singular formulation with the matrices D3 and ðD½00�Þ3 and a nullspace of dimension 3 did not sig-
nificantly improved the convergence rates. After elimination of the worse eigenvalue of T there usually remains a group of
several ‘quasi largest’ similar eigenvalues in T2 which cannot be taken into account with one single extra nullspace vector.

7.2. The complex first order matrix

We investigate in this section the evaluation of the first order magnetized diffusion matrix D?½00� þ iD�½00�. The first order
diffusion matrix parallel to the magnetic field can be evaluated as in the previous section. The corresponding ns systems pre-
sented in Table 2 are of size n ¼ ns and written
ðDþ iD0ÞaDk
½00� ¼ bDk

½00�;

haDk
½00�; yi ¼ 0;

8<: k 2 S; ð7:8Þ
where i2 ¼ �1 and D0 is the magnetized part of the complex Stefan–Maxwell matrix. This matrix is in the form
D0 ¼ ðI� y� uÞD0ðI� u� yÞ and D0 is the diagonal matrix such that D0kk ¼ nkqkB=p where B denotes the intensity of the mag-
netic field, nk; k 2 S, the species mole per unit volume, qk; k 2 S, the species molar charges, and p the pressure [43]. The first
order diffusion coefficients are then evaluated from
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D?½00�kl þ iD�½00�kl ¼ ha
Dk
½00�; b

Dl
½00�i; k; l 2 S: ð7:9Þ
The symmetry properties of D?½00� and D�½00� as well as the nullspace and range of D?½00�kl þ iD�½00�kl are derived as in the real
case and the details are omitted. As in the isotropic case, the transport linear systems imply the matrix relations
ðDþ iD0ÞðD?½00� þ iD�½00�Þ ¼ Q and ðD?½00� þ iD�½00�Þy ¼ 0. The matrix Dþ iD0 is such that NðDþ iD0Þ ¼ Cu;RðDþ iD0Þ ¼ u?þ
iu?;D?½00� þ iD�½00� is the generalized inverse of Dþ iD0 with prescribed nullspace Cy and range y? þ iy?, and for a > 0, we have

D?½00� þ iD�½00� ¼ ðDþ iD0 þ ay� yÞ�1 � ð1=aÞu� u [43].
As a direct application of the stationary iterative algorithms introduced in Section 5, we deduce that, upon using the split-

ting Dþ iD0 ¼M�W where M ¼ Dþ iD0 and D is the diagonal matrix (7.3) and letting T ¼M�1W;P ¼ P ¼ I� u� y, we
have the convergent asymptotic expansion
D?½00� þ iD�½00� ¼
X

06j<1
ðPT ÞjPM�1Pt :
Since D0 ¼ ðI� y� uÞD0ðI� u� yÞ and D0 is diagonal, the inverse of the matrix M ¼ Dþ iD0 is easily expressed in terms of
the inverse of the diagonal matrix Dþ iD0 and the iterates are easily evaluated [43,44]. Various approximations can then be
obtained by truncating this convergent series. The first approximation PM�1Pt generalizes the Hirschfelder-Curtiss approx-
imation with a mass corrector to the magnetized case [43]. The errors associated with the classical expansion are similar to
that of Fig. 1 and are omitted.

In order to improve the convergence rates for increasing ionization levels, we have used the more singular formulation
(5.24) with the vector u2. Note incidentally that the simplifying property hD0u2; u2i ¼ 0 holds when the total charge is zero.
Defining u1 ¼ u; y1 ¼ y; y2 ¼ ðDþ iD0Þu2; ðDþ iD0Þ2 ¼ ðDþ iD0Þ � y2 � y2=ðu2; y2Þ, and ðD?½00� þ iD�½00�Þ2 ¼ ðD

?
½00� þ iD�½00�Þ � u2 � u2=

hu2; y2i, we have ðDþ iD0Þ2ðD
?
½00� þ iD�½00�Þ2 ¼ Q2 where Q2 ¼ Q� u2 � y2=hu2; y2i and N ðD?½00� þ iD�½00�Þ2

� �
¼ spanfy1; y2g. The

more singular formulation can then be written
ðDþ iD0Þ2ða
Dk
½00�Þ2 ¼ ðb

Dk
½00�Þ2;

ðaDk
½00�Þ2; y1

� �
¼ ðaDk

½00�Þ2; y2

� �
¼ 0;

8<: k 2 S; ð7:10Þ
where ðbDk
½00�Þ2 ¼ Q2bDk

½00� and ðD?½00� þ iD�½00�Þ2 may equivalently be defined by ðD?½00� þ iD�½00�Þ2kl ¼ ðaDk
½00�Þ2; ðb

Dl
½00�Þ2

D E
¼ 0; k; l 2 S.

Upon letting ðDþ iD0Þ2 ¼M2 �W2 and M2 ¼ D2 þ iD0 where D2 is the diagonal matrix (7.6), and T 2 ¼M�1
2 W2;P2 ¼ Qt

2 ¼
I� u1 � y1=hu1; y1i � u2 � y2=hu2; y2i, we have the expansion
D?½00� þ iD�½00� ¼
u2 � u2

ðu2; y2Þ
þ
X

06j<1
ðP2T 2ÞjP2M

�1
2 Pt

2: ð7:11Þ
The errors corresponding to the new expansion are presented in Fig. 4 for x ¼ 10�4; x ¼ 10�3, and x ¼ 10�2 and
B ¼ 103 mT. The errors are calculated with the complex Frobenius matrix norm kAk2 ¼

P
16i;j6njaijj2 and are rescaled by

the initial error. These results show the good convergence behavior of the modified iterates (7.11).

7.3. Higher order diffusion matrices

We investigate in this section the evaluation of higher order approximations of diffusion matrices, also accounting for the
energy of the molecules. The corresponding ns linear systems presented in Table 1 are of size n ¼ 2ns þ np, where np denotes
the number of polyatomic species, and are written
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LaDk ¼ bDk ;

haDk ;Yi ¼ 0;

(
k 2 S: ð7:12Þ
The diffusion coefficients are then given by
Dkl ¼ haDk ; bDl i; k; l 2 S: ð7:13Þ
The coefficients of the matrix L are intricate expressions involving collision integrals and internal energy relaxation times
that are detailed in references [23,43]. The matrix L is symmetric positive semi-definite, NðLÞ ¼ RU;RðLÞ ¼ U?, and 2dbðLÞ � L
is positive definite when ns P 3. Upon partitioning R2nsþnp

into Rns � Rnsþnp
, the nullspace vector U , the constraint vector Y,

and the right hand sides bDk ; k 2 S, are given by
U ¼
u

0

� �
; Y ¼

y

0

� �
; bDk ¼ bDk

½00�

0

 !
; k 2 S; ð7:14Þ
where 0 denote the zero vector in Rnsþnp
, and u; y; bDk

½00�; k 2 S, have been defined in the previous section. The right hand sides
bDk ; k 2 S, can also be written
bDk ¼ ek � Y; k 2 S;
where ek; k 2 S, are the standard basis vectors of R2nsþnp
. Since bDk 2 RðLÞ; k 2 S, and hU;Yi ¼ 1, the transport linear systems

(7.12) are well posed and from Dkl ¼ hLaDk ; aDl i and the symmetry of L, we deduce the symmetry of D. We also have
Dkl ¼ haDk ; bDl i ¼ haDk ; eli since haDk ;Yi ¼ 0 in such a way that Dkl ¼ aDk

l ¼ aDl
k ;1 6 k; l 6 ns.

Upon defining the blocks aD ¼ ½aD1 ; . . . ; aDns � and bD ¼ ½bD1 ; . . . ; bDns �, the linear systems yield the matrix relations LaD ¼ bD

and YtaD ¼ 0. We introduce the rectangular matrix P ¼ ðIns ;OÞt 2 R2nsþnp ;ns
, the projectors Q ¼ Pt ¼ In � Y � U;Q ¼

Pt ¼ Ins � y� u, and we have the block decompositions
aD ¼
D

X

� �
; bD ¼

Q

O

� �
; P ¼

Ins

O

� �
; Q ¼ Q Ot

O Insþnp

 !
; ð7:15Þ
where O denotes the zero matrix in Rnsþnp ;ns
;X a matrix in Rnsþnp ;ns

, and Is the unit matrix of size s. Denoting by Z the general-
ized inverse of L with nullspace Y and range Y?, we have LZ ¼ Q;Z L ¼ P;NðZÞ ¼ RY;RðZÞ ¼ Y?, and aDk ¼ ZbDk ; k 2 S. As a
consequence, we have bD ¼ QP;D ¼ PtaD, and aD ¼ ZbD ¼ ZQP ¼ ZP, so that D ¼ PtaD ¼ PtZP.

Projected stationary iterative algorithms can be used for solving (7.12) with splittings in the form L ¼M�W and
M ¼ dbðLÞ þ diagðr1; . . . ;rnÞ [23]. We then have the convergent asymptotic expansion
aD ¼
X

06j<1
ðPT ÞjPM�1bD

; ð7:16Þ
and the higher order matrix D is then evaluated from D ¼ PtaD. The iterates ðaDÞj; j P 0, satisfy ðaDÞjþ1 ¼ PT ðaDÞj þ PM�1bD

and only involve the product of the matrix PT 2 R2nsþnp ;2nsþnp
by ðaDÞj 2 R2nsþnp ;ns

. The iterates can also be deduced from the
expansion (5.10) of the generalized inverse Z since aD ¼ ZbD and bD ¼ QbD. Using bD ¼ QP, we also obtain the identity
D ¼ Pt
X

06j<1
ðPT ÞjPM�1Pt

 !
P;
but the iterates must be taken on the block aD prior to evaluate D.
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In order to improve the convergence rates for increasing ionization levels, we have used the more singular formulation
(5.14) with the vector U2 defined by
Fig
U2 ¼
u2

0

� �
; ð7:17Þ
where u2 2 Rns
has been defined for first order matrices. Upon letting U1 ¼ U;Y1 ¼ Y;Y2 ¼ LU2; L2 ¼ L� Y2 � Y2=

hU2;Y2i;Z2 ¼ Z � U2 � U2=hU2;Y2i, and aD
2 ¼ aD � U2 � u2=hU2;Y2i, we have L2Z2 ¼ Q2; aD

2 ¼ Z2bD
; bD

2 ¼ Q2bD where Q2 ¼
Q� Y2 � U2=hU2;Y2i and NðZ2Þ ¼ spanfY1;Y2g. The more singular formulation can then be written
L2aDk
2 ¼ bDk

2 ;

haDk
2 ;Y1i ¼ haDk

2 ;Y2i ¼ 0;

(
k 2 S: ð7:18Þ
Letting L2 ¼M2 �W2;M2 ¼ dbðL2Þ þ diagðr1; . . . ;rnÞ, where ri;1 6 i 6 n, are nonnegative weights, T 2 ¼M�1
2 W2 and

P2 ¼ Qt
2 ¼ I� U1 � Y1=hU1;Y1i � U2 � Y2=hU2;Y2i, we have the expansion
aD
2 ¼

X
06j<1

ðP2T 2ÞjP2M
�1
2 bD

2 : ð7:19Þ
Finally we have D ¼ u2 � u2=hU2;Y2i þPtaD
2 or equivalently
D ¼ u2 � u2

hU2;Y2i
þPt

X
06j<1

ðP2T 2ÞjP2M
�1
2 Pt

2 P: ð7:20Þ
Only these modified formulations yield satisfactory results for all ionization levels. The resulting errors of the successive
approximations of D are presented in Fig. 5 for the ionization parameter x ¼ 10�4; x ¼ 10�3, and x ¼ 10�2. In the numerical
experiments, the matrix L has been evaluated following the approximations presented in [23]. The rotational relaxation
times for internal energy of the polyatomic ionized molecules have been approximated as the relaxation time of the corre-
sponding neutral molecules [1]. The results presented in Fig. 5 show that good convergence rates are also observed for higher
order matrices. The improvement of the convergence rates is exhibited in Fig. 6 where the convergence history of the expan-
sions obtained from L and L2 are presented. We have also experimented the more singular formulation with the matrix L3

and various vectors U3 but no significant improvements have been obtained. The errors presented in Fig. 6 corresponds to
the vector U3 ¼ ð0ns ; u2;0np Þt with straightforward notation.

In the magnetized case, we have to solve the ns complex systems
ðLþ iL0ÞaDk ¼ bDk ;

haDk ;Yi ¼ 0;

(
k 2 S; ð7:21Þ
where L0 ¼ ðI� Y � UÞL0ðI� U � YÞ, and L0 is a diagonal matrix given in [43]. The matrix Lþ iL0 is complex symmetric,
NðLþ iL0Þ ¼ CU , and RðLþ iL0Þ ¼ U? þ iU?. Introducing the generalized inverse Z of Lþ iL0 with nullspace CY and range
Y? þ iY? we have as in the real case the relations bD ¼ QP; aD ¼ ZP. Upon using splittings in the form Lþ iL0 ¼M�W with
M ¼ dbðLÞ þ diagðr1; . . . ;rnÞ þ iL0, we obtain the expansion
D? þ iD� ¼ P
X

06j<1
ðPT ÞjPM�1Pt

 !
Pt ;
but the convergence rates of these expansions decrease as ionization levels increase. As in the real case, we have to use a
more singular formulation in order to obtain a better convergence behavior for higher ionization levels. These expansions
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. 5. Reduced errors of higher order new approximate diffusion matrices for various ionized mixtures; j x ¼ 10�4; 
 x ¼ 10�3, and N x ¼ 10�2.
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Fig. 7. Reduced errors of higher order magnetized new approximate diffusion matrices for various ionized mixtures and B ¼ 103 mT;
j x ¼ 10�4; 
 x ¼ 10�3, and N x ¼ 10�2.
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are similar to those of the real case and the details are omitted. The resulting errors of the successive approximations of
D? þ iD� are presented in Fig. 7 for B ¼ 103 mT and x ¼ 10�4; x ¼ 10�3, and x ¼ 10�2. These results show that the good con-
vergence rates observed for isotropic higher order matrices also hold for magnetized higher order matrices.

The higher order effects usually have a minor impact on the diffusion matrix of neutral species mixtures [23]. They have a
more important impact, however, on ionized mixtures. Our numerical tests for high temperature air have shown that the
relative error in matrix norms kDk � Dk½00�k=kD

kk; kD? � D?½00�k=kD
?k, and kD� � D�½00�k=kD

kk, can be large for ionization levels
above 10�3. In addition, higher order effects due to the energy of the molecules are always important, even for weakly ion-
ized mixtures, in order to evaluate the electrical conductivities [6,8–10,32].

8. Application to thermal conductivity and Stefan–Maxwell equations

We investigate in this section iterative techniques in order to evaluate the thermal conductivity coefficients and the spe-
cies diffusion velocities. Both problems can be solved by using generalized conjugate gradient techniques. We consider both
the isotropic case as well as the nonisotropic magnetized case. In order to assess the accuracy of the resulting algorithms,
numerical experiments are again performed with high temperature air. In contrast with stationary techniques, it is found
that generalized conjugate gradient techniques are efficient for all ionization levels and magnetic field intensities.

8.1. Transport linear systems associated with k and v

The linear system associated with the thermal conductivity presented in Table 1 is of size n ¼ ns þ np and written in the
form
Kak ¼ bk
; ð8:1Þ
where the coefficients of the matrix K are intricate expressions that are detailed in reference [23]. This system can directly be
obtained from a variational formulation in the isotropic as well as in the magnetized case [24,43]. The matrix K is symmetric
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positive definite [23] and the thermal conductivities and the thermal diffusion ratios are evaluated from the following prod-
ucts [23,43]
Fig. 8.
k ¼ p
T
hak; bki; v ¼ L00kak; ð8:2Þ
where L00k is the upper right block of L of size ns � ðns þ npÞ in such a way that L has the block decomposition
L ¼ D L00k

Lk00 K

 !
: ð8:3Þ
The coefficients of the matrices L00k and L00k ¼ ðL00kÞt are given in [23] and the rescaled thermal diffusion ratios ev are also
obtained from the rescaled version eL00k of the block L00k [29]. More specifically, if eL00k is the matrix such that
diagðX1; . . . ;Xns ÞeL00k ¼ L00k then we have Xievi ¼ vi; i 2 S, where evis evaluated from ev ¼ eL00kak.

In the nonisotropic case, the linear system associated with the thermal conductivities presented in Table 2 is written in
the form
ðKþ iK0Þak ¼ bk
; ð8:4Þ
where K0 is a diagonal matrix given in [43]. The thermal conductivities and the thermal diffusion ratios are then given by the
following products
k? þ ik� ¼ p
T
hak; bki; v? þ iv� ¼ L00kak; ð8:5Þ
and the rescaled thermal diffusion ratios are similarly obtained from the rescaled block eL00k [29].
In the numerical experiments, the matrices K;K0 and L00k have been evaluated as described in Section 7.3. The isotropic

systems (8.1) have been solved with a conjugate gradients technique and the magnetized systems (8.4) by using an orthog-
onal residuals technique. In both situations, a diagonal preconditionning matrix has been used. In Fig. 8 are presented the
convergence history for various values of the ionization parameter x ¼ 10�4; x ¼ 10�3, and x ¼ 10�2 without magnetization.
The errors are defined by jk� kkj=k where k is the thermal conductivity and kk the kth iterate. In Fig. 9 are presented the con-
vergence history for x ¼ 10�2 and B ¼ 103 mT for k ¼ kk; k?, and k�. The errors are defined similarly by
jkk � kkkj=kk; jk? � k?kj=k?, and jk� � k�kj=jk�j. These figures shows the good behavior of the generalized conjugate gradient
techniques for all ionization levels and magnetic field intensities.

The numerical simulations with partially ionized air have also shown that three iterations are generally required in order
to evaluate the thermal diffusion ratios with a good accuracy whereas two iterates are generally sufficient for the thermal
conductivities.

8.2. Stefan–Maxwell equations

When an explicit time marching technique is used to compute a multicomponent flow then only the diffusion velocities
are required. When fractional steps are used, the diffusion velocities are also sufficient if the ‘diffusion time step’ is taken to
be explicit. In this situation, some type of Stefan–Maxwell equations can be solved by using orthogonal residuals algorithms
and the evaluation of the diffusion coefficients can be avoided.

The particular form of the Stefan–Maxwell equations depends on the order of accuracy of the diffusion velocities and on
magnetization. As a general rule, the Stefan–Maxwell equations are easily derived from the transport linear systems upon
multiplying on the right by the proper diffusion driving force vectors.
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Reduced errors for conjugate gradient approximate thermal conductivities k and various ionized mixtures; j x ¼ 10�4; 
 x ¼ 10�3, and N x ¼ 10�2.
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Fig. 9. Reduced errors for orthogonal residuals approximate thermal conductivities kk; k? , and k� and x ¼ 10�2.
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In the real isotropic case, multiplying on the right the system (7.1) by the species diffusion driving forces vector dk, and
summing over k, letting v½00� ¼ ðv½00�1; . . . ;v½00�ns Þt ;d ¼ ðd1; . . . ;dns Þt , and v½00�i ¼ �

P
j2SD½00�ijdj, we obtain the classical Stefan–

Maxwell relations
�Dv½00� ¼ d� y
P
l2S

dl;

hv½00�; yi ¼ 0:

8<: ð8:6Þ
The right-hand side Qd ¼ d� y
P

l2Sdl is the constrained diffusion driving forces vector whose components
di � yihd; ui; i 2 S, sum up to zero. The corresponding equations with Soret effects are obtained in a similar way by using
the modified diffusion driving forces vector dþ v$ log T where v ¼ ðv1; . . . ;vs

nÞ
t is the thermal diffusion ratios vector. The

Stefan–Maxwell equations can then be solved by a projected conjugate gradient method in each spatial direction.
In the nonisotropic case, a complex form of the Stefan–Maxwell equations is obtained [43] by multiplying the system

(7.8) on the right by the complex vector d?k � id�k and summing over k 2 S. Letting v?½00� ¼ ðv?½00�1; . . . ;v?½00�ns Þt and
v�½00� ¼ ðv�½00�1; . . . ;v�½00�ns Þt , the complex form of the Stefan–Maxwell equations is found in the form [43]
�ðDþ iD0Þðv?½00� � iv�½00�Þ ¼ d?i � id�i � y
P
l2S
ðd?l � id�l Þ;

hv?½00� � iv�½00�; yi ¼ 0:

8<: ð8:7Þ
The proper modifications of the complex Stefan–Maxwell equations in the presence of Soret effects correspond to includ-
ing the temperature gradient terms in the diffusion driving forces as discussed in [43]. The nonisotropic magnetized Stefan–
Maxwell equation can then be solved by an orthogonal residuals method in each spatial direction [43,44].

The Stefan–Maxwell equations between the species diffusion velocity vectors v½00�1; . . . ;v½00�ns , and the diffusion driving
forces d1; . . . ;dns , that are vectors of R3, only involve scalar coefficients. Upon decomposing these vectors with the canonical
basis of R3, and it is sufficient to consider the case of scalar diffusion velocities v½00�1; . . . ; v½00�ns and scalar diffusion driving
forces d1; . . . ; dn, real for isotropic systems, and complex for magnetized systems. In the numerical tests, we have arbitrary
selected a scalar diffusion driving force vector proportional to the charge per unit volume ðX1q1; . . . ;Xns qns Þt . Other arbitrary
selected diffusion driving forces yielded similar convergence behavior.

In Fig. 10 are presented the convergence history without magnetization B ¼ 0 for the ionization parameter
x ¼ 10�4; x ¼ 10�3, and x ¼ 10�2. The errors are defined by kv½00� � vk

½00�k=kv½00�k where v½00� ¼ ðv½00�1; . . . ; v½00�ns Þt is the scalar
diffusion velocity, vk

½00� ¼ ðvk
½00�1; . . . ; vk

½00�ns Þt the kth iterate, and kak denotes the Euclidean norm of a 2 Rn. Similarly, in
Fig. 11 are presented the convergence history for x ¼ 10�2 and B ¼ 103 mT for v½00� ¼ vk½00�; v

?
½00�, and v�½00�. The errors are de-

fined similarly by k vk½00� � vkk
½00�k=k vk½00�k; kv?½00� � vk?

½00�k=kv?½00�k, and kv�½00� � vk�
½00�k=kv�½00�k. These figures show the good behavior of

the generalized conjugate gradient techniques for various ionization levels and magnetic field intensities. These methods are
able to solve the linear systems in their original form and numerical experiments show that using the more singular Stefan–
Maxwell system associated with ðv½00�Þ2 more or less introduces a shift of one iterate in the error estimates in agreement with
the fact that with the more singular formulation there is one additional already prescribed search direction [40]. This is in
agreement with the fact that the worse eigenvalue of the iteration matrix T is generally not close to unity and the corre-
sponding eigenvector is not a quasi nullvector for D.

Higher order Stefan–Maxwell equations are easily derived from the transport linear systems and can also be rewritten
in terms of Schur complements. In the isotropic case, the higher order Stefan–Maxwell equations are obtained by
multiplying the linear system (7.12) on the right by dk and then summing over k 2 S. Upon defining vl ¼
�
P

k2SaDk
l dk;1 6 l 6 n; v ¼ ðv1; . . . ; vnÞt, where n ¼ 2ns þ np, or equivalently v ¼ �

P
k2SaDk dk ¼ �aDd, we have v 2 ðR3Þn and

the higher order Stefan–Maxwell equations are found in the form
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Fig. 11. Reduced errors for conjugate gradient approximate nonisotropic diffusion velocities with x ¼ 10�2; j vk ; 
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0 2 4 6 8
10–8

10–6

10–4

10–2

100

Iteration

E
rr

or
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�Lv ¼ bDd;
hv;Yi ¼ 0:

(
ð8:8Þ
Upon partitionning ðR3Þ2nsþnp
into ðR3Þn

s
� ðR3Þn

sþnp
and similarly R2nsþnp

into Rns � ðR3Þn
sþnp

we have the block
decompositions
v ¼
v
r

� �
; bDd ¼

Qd
0

� �
; Y ¼

y

0

� �
; ð8:9Þ
so that v ¼ Ptv and hv;Yi ¼ hv; yi ¼ 0 where v ¼ ðv1; . . . ;vns Þt are the diffusion velocities vi ¼ �
P

j2SDijdj. Moreover, using
the block decomposition (8.3) of the matrix L, and that of v, we obtain that Dv þ L00kr ¼ Qd and Lk00v þKr ¼ 0. We may then
write r ¼ �K�1Lk00v and finally eliminate r to obtain the alternative form of the higher order Stefan–Maxwell equations only
involving the velocity vector v
� D� L00kK�1Lk00
� �

v ¼ Qd: ð8:10Þ
These equations show that, in comparison with the first order velocities v½00�, the higher order diffusion velocities v re-
quire to modify the matrix D by the corrective terms �L00kK�1Lk00. Similar Schur complements have been investigated in var-
ious kinetic frameworks, notably by Muckenfusss and Curtiss [59] and Monchick, Munn, and Mason [58]. However, from a
numerical point of view, evaluating the product of the matrix D� L00kK�1Lk00 by a vector is costly since it requires solving a
linear system with the matrix K. Therefore, iterative methods are more conveniently designed with the matrix L than with
the Schur complement D� L00kK�1Lk00. In other words, since K is a full matrix, the formulation (8.8) with the enlarged veloc-
ity vector v is more interesting for iterative techniques than the alternative formulation (8.10) only involving the diffusion
velocities v.

Higher order Stefan–Maxwell equations have also been investigated by Kolesnikov and Tirskiy [52], Galkin [35], and Ma-
gin and Degrez [56] by using vectorial perturbed distribution functions. More specifically, instead of deriving the usual scalar
transport linear systems that are next multiplied by the proper diffusion driving forces, it is also possible to consider vecto-
rial species perturbed distribution functions and next to derive the transport linear systems for the diffusion velocities as
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elegantly done by Kolesnikov and Tirskiy. The resulting higher order Stefan–Maxwell linear equations derived from both
methods are easily shown to be equivalent after some matrix manipulations. Similar equations have also been obtained
in the framework of nonequilibrium thermodynamics by Zhdanov and Tirskiy [73].

In addition, the modifications required in order to take into account Soret effects simply corresponds to adding the tem-
perature gradient terms in the diffusion driving forces [43]. These higher order Stefan–Maxwell equations have been gener-
alized to the complex nonisotropic case including Soret effects but the details are omitted [43]. Finally the convergence rates
observed for the higher order Sefan–Maxwell equations has been found similar to that of first order Stefan–Maxwell equa-
tions and the details are omitted.

9. Conclusion

We have investigated iterative algorithms for solving transport linear systems in partially ionized plasmas. A new formu-
lation of the transport linear systems has been introduced associated with generalized inverses with nullspaces of increasing
dimensions. New stationary algorithms as well as generalized conjugate gradient techniques have been considered. The
behavior and accuracy of the resulting algorithms has been assessed by comprehensive numerical tests with high temper-
ature air. These algorithms yield low cost accurate approximations of the transport coefficients for all ionization levels and
magnetic field intensities and are relevant to multicomponent reactive plasmas numerical simulations.

Appendix A. Bloc structure of the transport linear systems

The transport linear systems are derived from a variational procedure used to solve constrained systems of linearized
Boltzmann integral equations. The finite dimensional functional space used in the variational procedure can generally be
written A ¼ spanfnrk; ðr; kÞ 2 Bg, where nrk; ðr; kÞ 2 B, are basis functions. Here B denotes the set of basis function indices
which has n elements. In the notation ðr; kÞ the index k refers to the species and the index r to the function type that is con-
sidered. The basis functions nrk are generally expressed in terms of the Laguerre–Sonine polynomials and the Wang Chang
and Uhlenbeck polynomials in the internal energy, thus accounting for the polyatomic nature of the molecules [23].

The set B can be used as a natural indexing set and the components of any vector x 2 Rn are then denoted by x ¼ ðxr
kÞðr;kÞ2B .

We can correspondingly write G ¼ ðGrs
klÞðr;kÞ;ðs;lÞ2B the coefficients of the matrix G. For any function type r, we consider the sub-

set Sr � S given by Sr ¼ fk 2 S; ðr; kÞ 2 Bg and we denote by nr the number of elements of Sr . Note that Sr may differ from S

since some types of functions do not appear for certain species. For instance, functions in the internal energy must not be
considered for the monatomic species. The transport linear system matrix G ¼ ðGrs

klÞðr;kÞ;ðs;lÞ2B in Rn;n can then be partitioned
into the blocks Grs ¼ ðGrs

klÞk2Sr ;l2Ss
of size nr 	 ns. For instance, for the thermal conductivity, the indexing set is given by

Bk ¼ f10g � S [ f01g � P, where P is the set of polyatomic species indices, and Bk has n ¼ ns þ np elements. Thus, the sys-
tem matrix K 2 Rnsþnp ;nsþnp

admits the block decomposition
K ¼ K1010 K1001

K0110 K0101

 !
;

with K1010 2 Rns ;ns
;K1001 2 Rns ;np

;K0110 2 Rnp ;ns
, and K0101 2 Rnp ;np

. The matrix diagðGrsÞ
� �

kl ¼ Grs
kldkl; ðr; kÞ; ðs; lÞ 2 B, is defined as

the diagonal of the rectangular block Grs.
The sparse transport matrix is then formed by the diagonals of all the rectangular blocks Grs of G. This matrix is denoted by

dbðGÞ 2 Rn;n and can be written
dbðGÞrs
kl ¼ Grs

kldkl; ðr; kÞ; ðs; lÞ 2 B; ðA:1Þ
where dkl is the Kronecker symbol. With respect to the matrix K for instance, we have the block decomposition
dbðKÞ ¼ diagðK1010Þ diagðK1001Þ
diagðK0110Þ diagðK0101Þ

 !
:

The matrices G and dbðGÞ have a general mathematical structure inherited from the properties of the Boltzmann linear-
ized collision operator and the properties of the variational approximation spaces associated with the transport linear sys-
tems [23].

Appendix B. Zero mass fractions

Zero mass fractions lead to artificial singularities in the transport linear systems which are eliminated by considering re-
scaled versions of the original systems [23]. Provided the diffusion matrix is replaced by the flux diffusion matrixeDkl ¼ ykDkl; k; l 2 S, it is proven in [23] that all the transport coefficients are smooth rational functions of the mass fractions
and admit finite limits when some mass fractions become arbitrarily small. Moreover, the iterative algorithms obtained for
positive mass fractions can be rewritten in terms of a rescaled system matrix that is still defined for nonnegative mass frac-
tions and yield the same sequence of iterates [23]. This result establishes rigorously the validity of a common practice in
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numerical calculations, which consists in evaluating transport properties of a given gas mixture by first adding to all the spe-
cies mass fractions a very small number, typically lower than the machine precision.

Even though the singularities disappear by using the flux diffusion matrix C ¼ diagðy1; . . . ; yns ÞD we have still evaluated
the numerical errors with the Frobenius norm of the original symmetric diffusion matrices D for the sake of simplicity. In
addition, similar convergence behaviors have been observed with the errors measured through the matrix C.
References

[1] K. Abe, H. Kihara, T. Uchida, N. Nishida, Experimental and numerical studies of rotational relaxation behind a strong shock wave in air, Shock Waves 11
(2002) 413–421.

[2] A. Ben-Israel, T.N.E. Greville, Generalized Inverses, Theory and Applications, Wiley, New York, 1974.
[3] N. Béreux, Fast direct solvers for some complex symmetric block Toeplitz linear systems, Linear Algebra Appl. 404 (2005) 193–222.
[4] A. Bermann, R.J. Plemmons, Nonnegative Matrices in the Mathematical Science, Academic Press, New York, 1979.
[5] G. Billet, V. Giovangigli, G. de Gassowski, Impact of volume viscosity on a shock/hydrogen bubble interaction, Comb. Theory Mod. 12 (2008) 221–248.
[6] S.I. Braginskii, Transport processes in a plasma, in: M.A. Leontovich (Ed.), Review of Plasma Physics, vol. 1, 1965, pp. 205–311.
[7] S.I. Braginskii, Transport phenomena in a completely ionized two-temperature plasma Soviet physics, JETP 6 (33) (1958) 358–369.
[8] D. Bruno, M. Capitelli, A. Dangola, Transport Coefficients of Partially Ionized Gases: A Revisitation, AIAA Paper, AIAA-2003-4039, 2003.
[9] D. Bruno, A. Laricchiuta, M. Capitelli, C. Catalfamo, A. Chikhaoui, E.V. Kustova, D. Giordano, Transport Properties of Equilibrium Argon Plasma in a

Magnetic Field, AIAA Paper, AIAA-2004-2161, 2004.
[10] D. Bruno, C. Catalfamo, A. Laricchiuta, D. Giordano, M. Capitelli, Convergence of Chapman–Enskog calculation of transport coefficients of magnetized

Argon plasma, Phys. Plasmas 13 (2006) 72307.
[11] M. Capitelli, I. Armenise, D. Bruno, M. Cacciatore, R. Celiberto, G. Colonna, O. de Pascale, P. Diomede, F. Esposito, C. Gorse, K. Hassouni, A. Laricchiuta, S.

Longo, D. Pagano, D. Pietanza, M. Rutigliano, Non-equilibrium plasma kinetics: a state-to-state approach, Plasma Sour. Sci. Tech. 16 (2007) S30–S44.
[12] G. Colonna, I. Armenise, D. Bruno, M. Capitelli, Reduction of state-to-state kinetics to macroscopic models in hypersonic flows, J. Thermophys. Heat

Transf. 20 (2006) 477–486.
[13] S. Chapman, T.G. Cowling, The Mathematical Theory of Non-uniform Gases, Cambridge University Press, Cambridge, 1970.
[14] T. Chan, Deflated decomposition of solutions of nearly singular systems, SIAM J. Numer. Anal. 21 (1984) 738–754.
[15] T. Chan, Generalized deflated block-elimination, SIAM J. Numer. Anal. 23 (1986) 913–924.
[16] R.M. Chmieleski, J.H. Ferziger, Transport properties of a nonequilibrium partially ionized gas, Phys. Fluids 10 (1967) 364–371.
[17] P.C. Clemmow, J.P. Dougherty, Electrodynamics of Particles and Plasmas, Addison-Wesley Pub. Comp. Inc., Redwood City, 1969.
[18] K. Criner, A. Cessou, J. Louiche, P. Vervisch, Stabilization of turbulent lifted jet flames assisted by pulsed high voltage discharge, Comb. Flame 144

(2006) 422–425.
[19] U. Daybelge, Transport properties of ionized monatomic gases, J. Appl. Phys. 41 (1969) 2130–2139.
[20] P. Degond, B. Lucquin-Desreux, The asymptotics of collision operators for two species of particles of disparate masses, Math. Mod. Methods Appl. Sci. 6

(1996) 405–436.
[21] P. Degond, B. Lucquin-Desreux, Transport coefficients of plasmas and disparate mass binary gases, Transp. Theory Stat. Phys. 25 (1996) 595–633.
[22] R.S. Devoto, Transport properties of ionized monatomic gases, Phys. Fluids 9 (1966) 1230–1240.
[23] A. Ern, V. Giovangigli, Multicomponent Transport Algorithms, Lectures Notes in Physics Series Monographs, vol. m24, Springer Verlag, Berlin, 1994.
[24] A. Ern, V. Giovangigli, Thermal conduction and thermal diffusion in dilute polyatomic gas mixtures, Physica A 214 (1995) 526–546.
[25] A. Ern, V. Giovangigli, Fast and accurate multicomponent property evaluations, J. Comp. Phys. 120 (1995) 105–116.
[26] A. Ern, V. Giovangigli, The structure of transport linear systems in dilute isotropic gas mixtures, Phys. Rev. E 53 (1996) 485–492.
[27] A. Ern, V. Giovangigli, Optimized transport algorithms for flame codes, Comb. Sci. Tech. 118 (1996) 387–395.
[28] A. Ern, V. Giovangigli, Projected iterative algorithms with application to multicomponent transport, Linear Algebra Appl. 250 (1997) 289–315.
[29] A. Ern, V. Giovangigli, Thermal diffusion effects in hydrogen–air and Methane–Air Flames, Comb. Theory Mod. 2 (1998) 349–372.
[30] V. Faber, T.A. Manteuffel, Necessary and sufficient conditions for the existence of a conjugate gradient method, SIAM J. Numer. Anal. 21 (1984) 352–

362.
[31] V. Faber, T.A. Manteuffel, Orthogonal error methods, SIAM J. Numer. Anal. 24 (1987) 170–187.
[32] J.H. Ferziger, H.G. Kaper, Mathematical Theory of Transport Processes in Gases, North-Holland Publishing Company, Amsterdam, 1972.
[33] R.W. Freund, On Conjugate gradient type methods and polynomial preconditioners for a class of complex non-Hermitian matrices, Numer. Math. 57

(1990) 285–312.
[34] R.W. Freund, Conjugate gradient type methods for linear systems with complex symmetric coefficient matrices, SIAM J. Sci. Stat. Comp. 13 (1992) 425–

448.
[35] V.S. Galkin, Transformations of the equations of the first approximation of Chapman–Enskog method and vector transport relations for mixtures of

polyatomic gases, Appl. Math. Mech. 71 (2007) 269–286.
[36] A. García Muñoz, Formulation of molecular diffusion in planetary atmospheres, Plan. Space Sci. 55 (2007) 1414–1425.
[37] V. Giovangigli, Mass conservation and singular multicomponent diffusion algorithms, Impact Comput. Sci. Eng. 2 (1990) 73–97.
[38] V. Giovangigli, Convergent iterative methods for multicomponent diffusion, Impact Comput. Sci. Eng. 3 (1991) 244–276.
[39] V. Giovangigli, Multicomponent Flow Modeling Birkh €a User, Boston, 1999. %3chttp://cmap.polytechnique.fr/~giovangi%3e.
[40] V. Giovangigli, Accelerated projected iterative techniques and multicomponent diffusion, submitted for publication.
[41] V. Giovangigli, B. Graille, Kinetic theory of partially ionized reactive gas mixtures, Physica A 327 (2003) 313–348.
[42] V. Giovangigli, B. Graille, Asymptotic stability of equilibrium states for ambipolar plasmas, Math. Mod. Methods Appl. Sci. 14 (2004) 1361–1399.
[43] V. Giovangigli, B. Graille, Kinetic theory of partially ionized reactive gas mixtures II, J. Phys. A 42 (2009) 025503.
[44] V. Giovangigli, B. Graille, Projected iterative algorithms for complex symmetric systems arising in magnetized multicomponent transport, Linear

Algebra Appl. 430 (2009) 1404–1422.
[45] V. Giovangigli, B. Graille, T. Magin, M. Massot, Multicomponent transport in weakly ionized mixtures, Plasma Sour. Sci. Tech., in press.
[46] G.H. Golub, C.F. Van Loan, Matric Computations, The John Hopkins University Press, Baltimore, 1983.
[47] B. Graille, T. Magin, M. Massot, Kinetic theory of plasmas: translational energy, Math. Mod. Methods Appl. Sci. 10 (2009) 1–2.
[48] R.N. Gupta, J.M. Yos, R.A. Thomson, K. Lee, A review of reaction rates and thermodynamic and transport properties for an 11 – species model for

chemical and thermal nonequilibrium calculations to 30,000 K, NASA Ref. Pub. 1232 (1990).
[49] M.R. Hestenes, E. Stiefel, Methods of conjugate gradients for solving linear systems, J. Res. Nat. Bur. Standards 49 (1952) 409–436.
[50] S. Kaneko, Kinetic theory in a uniform magnetic field, J. Phys. Soc. Jpn. 15 (1960) 1685–1690.
[51] H.B. Keller, On the solution of singular and semi-definite linear systems by iteration, SIAM J. Numer. Anal. 2 (1965) 281–290.
[52] A.F. Kolesnikov, G.A. Tirskiy, Equations of hydrodynamics for partially ionized multicomponent mixtures of gases, employing higher approximations of

transport coefficients, Fluid Mech. Sov. Res. 13 (1984) 70–80.
[53] E.V. Kustova, On the simplified state-to-state transport coefficients, Chem. Phys. 270 (2001) 177–195.
[54] J.G. Lewis, R.R. Rehm, The numerical solution of a nonseparable elliptic partial differential equation by preconditioned conjugate gradients, J. Res. Nat.

Bur. Stand. 85 (1980) 367–390.

http://cmap.polytechnique.fr/~giovangi


4142 V. Giovangigli / Journal of Computational Physics 229 (2010) 4117–4142
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